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Abstract 

NASA is establishing a fleet of conceptual air vehicle designs to support research and development for 

Urban Air Mobility (UAM). This fleet of vehicles will enable examination of the sensitivity of UAM 

vehicle designs to technology assumptions, identify key research and development needs for UAM aircraft, 

and provide the UAM community with reference vehicles that are publicly available and based upon known 

assumptions. To date, four six-passenger reference vehicles have been established: a quadrotor, a side-by-

side, a lift-plus-cruise, and a quiet single main rotor helicopter; this paper adds a tiltwing vehicle to the 

fleet.  

This paper details the design process that was followed in order to establish the tiltwing vehicle in the fleet, 

including early conceptual design decisions, sizing and configuration trades, structural analyses, proprotor 

design and aeroacoustic predictions, and aerodynamic analyses. The resulting tiltwing vehicle uses a 

turboelectric propulsion system to power six proprotors positioned on a tilting main wing and two tilting 

proprotors positioned on the horizontal tail. This paper also compares the resulting tiltwing vehicle with the 

other six-passenger reference vehicles, including an updated lift-plus-cruise vehicle, and then proposes 

future studies. The fleet of UAM reference vehicles will continue to evolve; subsequent versions of the 

reference vehicles will be based upon the results of future trade studies and technology developments. 
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2 Introduction

This paper is part of a series of publications that explore vehicle requirements and technology trades for 

Urban Air Mobility (UAM). The ultimate objectives of this series of papers are to establish a catalog of 

conceptual air vehicle designs, examine the sensitivity of these vehicle designs to technology assumptions, 

and identify key research and development needs for UAM aircraft. 

In January 2018, Johnson et al. published designs of three concept vehicles for vertical takeoff and landing 

(VTOL) air taxi operations [1]. These concepts, shown in Figure 1, include a single-passenger quadrotor, a 

six-passenger side-by-side helicopter, and a fifteen-passenger tiltwing concept. In May 2018, Patterson et 

al. defined a set of Urban Air Mobility (UAM) mission requirements [2]. The most constraining mission 

identified, which included transporting six passengers on two 37.5 nautical mile “hops” without 

refueling/recharging, was used to resize two of the existing VTOL air taxi concepts, the quadrotor and side-

by-side helicopter, and to design a new lift-plus-cruise concept. These vehicle concepts are shown in Figure 

2 and were published by Silva et al. in June 2018 [3]. In January 2019, Antcliff et al. defined technology 

targets and future research areas for UAM vehicles by examining the technology assumptions made during 

the design of the existing concept vehicles and discussing potential future technologies not yet included in 

the designs [4]. In January 2020, Johnson published a quiet single main rotor helicopter, designed 

specifically for low-noise operations to enable a baseline for comparison [5]. 

 

 

 

(a) Quadrotor (one-passenger) (b) Side-by-Side (six-

passenger) 

(c) Tiltwing (fifteen-passenger) 

Figure 1.  Initial NASA VTOL air taxi concept vehicles [1]. 

  
(a) Quadrotor (b) Side-by-Side 

   
(c) Lift-plus-Cruise (d) Quiet Single Main Rotor Helicopter 

Figure 2.  Existing NASA VTOL UAM six-passenger reference vehicles [3] [5]. 
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Across the UAM community, a wide range of vehicle configurations and operational missions have been 

proposed. The NASA UAM reference vehicle fleet is not yet representative of many of the vehicle 

configurations proposed across the community. This paper adds one additional reference vehicle, a six-

passenger tiltwing, as a step towards a more representative fleet of six-passenger UAM reference vehicles. 

A tiltwing is compelling as an aircraft type for UAM due to its potential to increase cruise speed and 

efficiency while reducing noise in cruise, as compared to the four prior six-passenger reference vehicles. 

The prior six-passenger reference vehicles all have rotors that do not tilt and either operate in edgewise 

flight (which limits cruise speed and typically generates more noise than a proprotor in axial flight) or are 

stopped during cruise (generating drag and weight penalties). There are several known technology 

challenges and opportunities which exist for tiltwings, and this reference aircraft will allow researchers to 

explore the implications of technology advancements and higher speed operations.  

The NASA UAM reference vehicles have been chosen to demonstrate specific vehicle attributes 

representative of those proposed across the UAM community and avoid looking like any single industry 

solution. The reference vehicles are based upon consistent, known assumptions, and documentation and 

computational models are publicly available [6]. These reference vehicles are available to the UAM 

community as a potential means to: 

• Investigate vehicle technologies and identify enabling technologies 

• Expose design trades and constraints 

• Explore a range of UAM mission requirements / concepts of operation 

• Simulate vehicle operations; for example, air traffic management simulation and planning, fleet 

noise, and passenger acceptability studies 

• Tackle barriers to airworthiness and certification; for example, propulsion architecture, 

manufacturing, and reserve requirements 

• Focus tools and methods development towards the needs of UAM. 

A key requirement for practical UAM vehicles is that they produce noise levels deemed acceptable to the 

community. Present NASA efforts, beyond the scope of this paper, seek to develop best practices and 

practical workflows to allow routine and credible evaluation of noise in conceptual design [7]; other recent 

research efforts have also proposed incorporation of quantitative noise prediction in conceptual design [8]. 

Existing NASA reference vehicles are already being used by parties within and external to NASA. NASA 

is holding a series of UAM vehicle workshops, initially limited to NASA personnel and then widening 

scope to the broader UAM community. These workshops will guide NASA’s work on UAM vehicle 

technologies and ensure that NASA’s UAM vehicle research and development remains relevant. Between 

each workshop, NASA plans to: 

• Perform design trades at both the individual aircraft and network (fleet) level; for example, in 

acoustics, performance, and cost 

• Perform focused technology research and development 

• Improve UAM-focused design tools. 

The outcomes of these efforts will be presented at the workshops, and each workshop will be used to drive 

the focus of future efforts. The published designs of the reference vehicles to date are by no means final; 

these vehicles will act as baselines upon which to conduct trade studies, and future versions of these 

concepts will be based upon the results of trade studies and technology developments. 

This paper briefly describes the mission requirements and the tools used to design the tiltwing to date, and 

then details the design process that was followed to achieve the first iteration of the tiltwing reference 

vehicle. Initially, a high-level conceptual design was performed that focused on ensuring that the vehicle 

was representative of industry concepts while considering low-noise objectives. Then, preliminary sizing 

and configuration design trades were performed. Next, structural analyses were performed to improve the 
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empennage weight estimate, and proprotors were designed which enabled preliminary acoustic predictions 

to be made. In the final step of the design process, aerodynamic analyses were performed to investigate the 

accuracy of the sizing tool in modeling proprotor-wing interference effects during wing-borne flight. In 

concluding the paper, the resulting turboelectric tiltwing reference vehicle is compared with the other six-

passenger reference vehicles, including an updated lift-plus-cruise vehicle, and future studies are proposed. 

A rendering of the final tiltwing reference vehicle is shown in Figure 3. 

 
(a) Cruise configuration 

 
(b) Hover configuration 

Figure 3.  Rendering of the final tiltwing reference vehicle design described in this report. 

3 Sizing Mission Requirements

This work used the mission requirements set out by Patterson et al. [2] in order to be consistent with the 

previous concepts developed by Silva et al. [3]. Figure 4 represents the sizing mission in height Above 

Ground Level (AGL). Table 1 details segments 1-9 (the first of two identical 37.5 nmi “hops” into a 

headwind of 10 knots) and segment 19 (cruise reserve) of the sizing mission; the speeds for best rate of 

climb, 𝑉𝑦, and best range, 𝑉𝑏𝑟, for each segment are determined via NDARC modeling. 

In addition, the reference vehicles are sized for a second mission and two conditions: 

• The second sizing mission achieves emergency sizing of the propulsion battery system by requiring 

the vehicle to hover for two minutes at hover out of ground effect (HOGE) power (roughly 

equivalent to a discharge rate of 30C); the batteries are expected to be used only once for this 

contingency, and replacement will be necessary after this event. 

• Condition 1: find maximum takeoff weight (MTOW) by performing HOGE at 6,000 ft ISA and 

100% Maximum Rated Power (MRP). In general, this means that the aircraft engine and 

transmission will be flat-rated, with no excess capability at lower density altitudes (i.e., higher air 

density through some combination of physical altitude, temperature, and pressure), but smaller 

overall than if it had been designed at a lower density altitude for MTOW.  

• Condition 2: cruise climb at 500fpm at 10,000 ft ISA (4,000 ft AGL in the sizing mission), at 100% 

MRP and design gross weight. This condition provides maneuver margin at maximum cruise 

altitude. 

 
Figure 4.  Sizing mission profile [2]. 



 

4 

Table 1.  Mission Segments [3] 

Segment 1 2 3 4 5 6 7 8 9 19 

Initial Alt. (ft MSL ISA) 6,000 6,000 6,050 6,050 10,000 6,050 6,050 6,050 6,000 10,000 

Final Alt. (ft MSL ISA) 6,000 6,050 6,050 10,000 10,000 6,050 6,050 6,000 6,000 10,000 

Time, 𝑡 (sec) 15 30 10 𝑡𝑐𝑙𝑖𝑚𝑏  𝑡𝑐𝑟𝑢𝑖𝑠𝑒  10 30 30 15 1200 

Distance, 𝐷 (nmi) - 0 0 𝐷𝑐𝑙𝑖𝑚𝑏  37.5-𝐷𝑐𝑙𝑖𝑚𝑏  0 0 0 - - 

Airspeed, 𝑉 - - 0 𝑉𝑦 𝑉𝑏𝑟 0 0 - - 𝑉𝑏𝑟 

Rate of Climb (ft/min) - 100 0 ≥ 900 0 0 0 -100 - 0 

Percent of Max Power, 𝑃 10% 100% 100% 𝑃𝑐𝑙𝑖𝑚𝑏  𝑃𝑐𝑟𝑢𝑖𝑠𝑒  100% 100% 100% 10% 𝑃𝑐𝑟𝑢𝑖𝑠𝑒  

4 Tools 

The primary sizing and performance analysis tool used in this study was NASA Design and Analysis of 

Rotorcraft (NDARC) release 1.14 [9]. NDARC is an aircraft system analysis tool intended to support both 

conceptual design efforts and technology impact assessments. The principal function of NDARC is to size 

an aircraft to meet specified design conditions and missions and then analyze the performance of the aircraft 

for a set of off-design missions and operating conditions. The aircraft consists of a set of components, such 

as fuselage, rotors, wings, tails, gearboxes, and drive shafts. For each component, attributes, such as 

performance, drag, and weight, can be estimated. The aircraft attributes are obtained from the sum of the 

component attributes. NDARC enables trade studies to be quickly and consistently performed; for example, 

NDARC enables the evaluation of potential benefits and drawbacks of many different technologies and the 

impacts of modifications in mission requirements on the full aircraft’s design and performance. 

NDARC was first written incorporating low-fidelity models appropriate for general rotorcraft conceptual 

design, but was designed to be broadly adaptable to conventional and unconventional aircraft concepts; the 

architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and 

ultimately, multidisciplinary design, analysis, and optimization. Currently, NDARC provides a capability 

to estimate the performance and attributes of some advanced rotor concepts through models which have 

been added to meet specific research goals. Development and incorporation of additional models in 

NDARC will be driven by the needs of the researchers investigating technology trades on the NASA UAM 

reference vehicles. For example, NDARC release 1.15 [10] included a model to account for active flow 

control, the application of which is likely to be a design trade conducted on the tiltwing concept described 

in this publication. Incorporation of such additional models in NDARC will influence sizing predictions 

and enable additional technology trades. 

For the results presented in this paper, NDARC was executed via An Integrated Design Environment for 

NDARC (AIDEN) version 1.8.8 [11]. AIDEN improves the NDARC user input and output experience by 

providing a graphical user interface and introducing syntax checking, input auto-completion, model version 

control, and other data entry and management tools similar to those found in integrated development 

environments. The designer’s ability to interpret output is improved through a set of tools that display 

solution convergence information, provide an indexed form of NDARC output, and automate plot 

generation. 

OpenVSP, an open-source parametric geometry tool [12], was used to generate conceptual models both for 

visualization and modeling. OpenVSP models can be generated and updated directly from NDARC outputs 

using an N2 event in AIDEN: an N2 event allows the user to couple NDARC jobs and Python scripts; 

Python scripts can directly update OpenVSP geometries by utilizing the Python-to-OpenVSP application 

programming interface (API). OpenVSP geometry models are then available as a basis for further aircraft 

design studies, such as aerodynamic and structural analyses, and the results obtained can be fed back into 

NDARC. 
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The structural weight of unconventional aircraft is difficult to predict using empirical relationships because 

technologies, operational concepts, structural topologies, and load cases may be significantly different than 

legacy vehicles.  This tiltwing vehicle has novel approaches to propulsive layout, giving rise to load cases 

not present in historical datasets, and therefore higher fidelity structural analysis was required to obtain a 

credible weight prediction. Closely predicting component weights is especially important because of the 

sensitivity to weight growth of VTOL, and especially electric VTOL, vehicles1.  

M4 Structures Studio (M4SS) version 4.0 [13] was used to perform structural analysis on the tiltwing 

reference vehicle. M4SS is a software suite which serves as an interface between OpenVSP and NASTRAN 

(in the present case, the commercial software MSC Nastran) [14] [15] for conceptual design weight 

estimation. The workflow for M4SS begins with an OpenVSP aircraft model which is modified in a custom 

version of OpenVSP to include parametrically placed components known as "sketch points." Sketch points 

maintain connectivity as the design changes dimensions as long as component connection topology does 

not change. The user then sets up material properties, design variables, component joints, and load cases in 

a separate tool. A finite element mesh (FEM) and NASTRAN input decks are generated by M4SS 

automatically, mapping the design intent to the current geometry. The user can then take the structural 

model and execute various NASTRAN analyses, including static load cases and modal analysis. M4SS 

parses the NASTRAN results and generates a customized weight statement which can be used to update 

the weights in NDARC. Subsequent runs of M4SS can be automated so that the morphing of the OpenVSP 

and NDARC models will propagate to updates of the FEM, resulting in updated weight statements. M4SS 

incorporates some VTOL load cases and modal analyses and has been validated against several 

conventional rotorcraft [16]. 

An assessment of the aerodynamic and acoustic performance of the initial proprotor design was conducted 

using two NASA-developed software suites: the Propeller Analysis System (PAS) component of the NASA 

Aircraft Noise Prediction Program (ANOPP) [17] and the Broadband Acoustic Rotor Codes (BARC) suite 

[18] [19]. PAS is a set of computational modules for predicting the aerodynamics, performance, and noise 

of propellers. Classical aerodynamic theory is used to find the surface pressures and frictional stresses on 

the blade surfaces, and blade element momentum theory (BEMT) is used to compute the aerodynamic 

performance of the propeller for a specified flight condition. PAS also includes a built-in Ffowcs Williams 

and Hawkings (FW-H) solver capable of computing the near- and far-field contributions of the periodic 

thickness and loading noise sources. BARC meanwhile is a semi-empirical software suite that employs a 

blade element analysis technique in which broadband noise contributions of individual blade elements are 

summed to yield the total blade noise. Specifically, BARC is used in this study to compute the total blade 

self-noise, or that due to the interaction between the proprotor blade and the turbulence generated in its own 

boundary layer and near wake. Local blade element inflow conditions computed in PAS serve as inputs 

into BARC, from which boundary layer parameters and self-noise contributions are computed. Future work 

will include analysis of interactional noise mechanisms such as rotor-rotor and rotor-airframe interactions, 

reflections, and scattering effects. 

RoBIN [15] was used to perform aerodynamic analyses of the tiltwing vehicle in wing-borne flight phases 

for feedback into and comparison with NDARC. RoBIN is a 3D unsteady vortex lattice method that has 

recently been developed at NASA based on the vortex ring formulation by Katz and Plotkin [20]. In RoBIN, 

rotating proprotor blades and wings were modeled as thin surfaces, and wakes were allowed to freely 

propagate downstream as the simulation steps through time. Since RoBIN models lifting surfaces and wakes 

1 The weight growth factor, defined as growth in design gross weight per unit growth in empty weight, is typically large for VTOL 

vehicles because they require a thrust-to-weight ratio of greater than one to achieve VTOL operations (whereas thrust-to-weight of 

a conventional takeoff and landing vehicle is much less than one, for example). Therefore, any increase in the weight of the vehicle 

is roughly proportional to the increase in thrust required, which increases power and energy requirements, which cascade through 

to further increase vehicle weight. Electric VTOL increases power and energy requirements, which cascade through to further 

increase vehicle weight. Electric VTOL vehicles are especially susceptible to weight growth if battery and electric power systems 

have low specific energy and/or specific power. The weight growth factor can also be more extreme for some distributed electric 

aircraft with fixed pitch proprotors (necessitating variable speed), where rotor diameter (and thus inertia) is limited by flight control 

requirements, leading to increased disk loading (and therefore increased hover power) or more rotors, each with extra wiring, power 

conditioning, cooling, and support structure weights. 
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together in 3D space, vortex interaction effects are inherently present between modeled components. Thus, 

results from RoBIN were used to estimate certain NDARC parameters related to inter-component 

interaction. These parameters included the wing’s spanwise efficiency factor (when blown by proprotors) 

and the wing-on-tail interference factor. 

5 Initial Conceptual Design 

With the purpose of representing likely industry concepts, 17 past and current tiltwing concepts were 

evaluated to determine a range of design choices to consider. These vehicles had maximum gross weights 

of 1,800 to 7,000 pounds, two to five passengers, two to eight proprotors, 108 to 352 knot cruise speeds, 

and 35 to 500 nautical mile ranges as seen in Table 2. From this initial data set, the advantages and 

disadvantages of each design were considered to aid in developing initial sketches of the tiltwing conceptual 

design. The majority of configuration decisions were focused on the placement of the proprotors and 

wing(s), the way in which the wings and/or proprotors would tilt, and potential failure modes. There was a 

concerted effort in the design to prioritize the longitudinal static stability and reduce the potential for 

adverse effects due to critical loss of thrust scenarios. Various configurations were considered including 

lifting rotors on a tailboom, proprotors on a canard, a proprotor aft of the empennage, and unconventional 

wing tilt axes. 

Table 2.  Comparison of NASA Tiltwing Concept with Industry Concepts 

  Industry Tiltwing Concepts NASA Tiltwing Concept 

Gross weight (lb) 1800 - 7000 ~6000 

No. of proprotors 2 - 8 8 

No. of passengers 2 - 5 6 

Wing span (ft) 18 - 40 44 

Cruise airspeed (kt) 108 - 352 155 

Range (nmi) 35 - 500 75 

During brainstorming, an initial tiltwing conceptual design emerged that featured eight proprotors. To 

power all eight motors/proprotors, a turboelectric propulsion system was chosen that utilizes a single 

turboshaft engine without cross-shafting; further detail regarding this decision is provided in Section 6.1. 

Six proprotors were positioned along the leading edge of a tilting main wing, while two tilting proprotors 

were positioned at the tips of the fixed horizontal tail of a T-tail empennage. The thickness-to chord ratios 

of both the main wing and horizontal tail were chosen to be 18 percent to accommodate the expected 

structural loads of the proprotors. 

The specific locations of the proprotors were intentionally chosen due to various aerodynamic, structural, 

acoustic, and failure mode considerations. To reduce noise, all eight proprotors were located ahead of the 

leading edge by 3/4 the proprotor radius. Noise could have been reduced by moving the proprotor further 

from the wing, but this introduces additional challenges structurally, due to the long moment arm, and 

aerodynamically, because the contracted proprotor wake does not yield beneficial aeropropulsive effects 

along the full span of the wing.  

To prevent cascading proprotor failures, the main wing is swept so that proprotors are longitudinally 

staggered. Laterally, the main wing proprotors are placed such that the inboard proprotor is close to the 

fuselage, the outboard proprotor is at the wing tip, and the three proprotor disks per semi-span are tangential 

to one another as viewed from the front. Although this tangential placement will leave sections of the wing 

unblown as the slipstream aft of the proprotors contracts, there is a reduced probability of direct interaction 

between the tip vortices of adjacent proprotors, which would likely reduce noise. The proprotors at wing 

tips are positioned such that the shaft axis is coincident with the wing chord to assist in counteracting the 

wing tip vortex. The inboard proprotors are positioned slightly below the chord such that the nacelle does 

not disrupt the wing suction peak and thereby inhibit the lift generated by the wing.  
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Several design decisions were made in order to be representative of industry concepts. A five-bladed 

proprotor was chosen as this was the greatest blade count seen in active UAM vehicle developments, and 

an increased blade count tends to reduce noise. A steep upsweep of approximately 25 degrees at the aft of 

the fuselage and a retractable landing gear were chosen, which are also representative of many current 

UAM concepts. Lastly, the blade tip speed was kept below 550 ft/sec; this decision stems from a desire to 

reduce noise and maintain consistency with previous reference vehicles [3]. 

All proprotors incorporate collective control and are geometrically identical except for their spin direction. 

Proprotor spin direction for this vehicle was chosen for cruise performance, spinning outboard downwards 

to reduce strength of the wing tip vortex; however, this will be subject to future studies. For example, the 

XC-142A used an outboard upwards rotation direction as this reduced the angle of attack of the unblown 

central section of the wing and improved transition characteristics [21]. The XC-142A also applied leading 

edge slats along the wing sections behind up-going proprotor blades only, in an attempt to improve flow 

attachment at these locally higher angles of attack [21]. Slats are not used in the present tiltwing design, 

although conventional flaps are included on the wing. Transition between forward flight and hover modes 

was not modeled during the design of this vehicle. Therefore, the effects of slats or other flow control 

devices were not evident, and this level of detail has not been studied for this vehicle. 

6 Preliminary Analyses 

After closing in on an initial vehicle configuration, a variety of preliminary analyses were performed. 

NDARC was used as the backbone for vehicle sizing throughout these analyses.  

Section 6.1 describes sizing and configuration trades performed using NDARC. Trade studies were 

conducted to determine the appropriate number of proprotors on the main wing and whether to use cross-

shafting or direct-drive motors. Wire weight was estimated by hand iteration, and a new motor model was 

developed. This resulted in an approximately sized vehicle design on which further analysis, external to 

NDARC, was conducted. 

Further analysis focused on the aspects of the NDARC sizing process which used assumptions that had the 

greatest level of uncertainty. Section 6.2 describes the structural analyses performed to obtain an improved 

empennage weight estimate for input to NDARC, because the unconventional tail configuration (T-tail with 

tiltrotors at the tips of the horizontal tail) is not well represented by empirical weight estimates. Section 6.3 

describes how an initial proprotor design was conducted in order to study 5-bladed and 8-bladed proprotors, 

perform aeroacoustic predictions, and gain insights into the challenges involved in proprotor design for the 

range of flight conditions from hover to cruise. Finally, Section 6.4 describes the aerodynamic analyses that 

were performed to gain an understanding of NDARC’s ability to model the vehicle in wing-borne flight 

mode, with interaction effects between proprotors and wings. 

These analyses informed modifications of NDARC input parameters and improved confidence in the 

vehicle sizing. The following sections describe these preliminary analyses. 

6.1 Vehicle Sizing in NDARC 

6.1.1 Early Sizing and Configuration Trades 

The six-passenger tiltwing vehicle development in NDARC used the existing NDARC model of the fifteen-

passenger turboelectric tiltwing vehicle designed by Johnson et al. [1] as a starting point. The initial 

alterations made to the NDARC model were: 

• Payload reduction from 3000 lb to 1200 lb, corresponding to six passengers weighing 200 lb each 

• T-tail empennage 

• Tilting wingtip proprotors on the horizontal tail. 
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The initial six-passenger NDARC model encompassed three speed-reducing gearboxes: one gearbox 

connected the cross-shafted proprotors on the main wing; the second gearbox connected the two cross-

shafted tilting proprotors located on the horizontal T-tail; the third gearbox connected the turboshaft engine 

to a generator, which provided electrical power to a battery pack. The battery pack, located at the vehicle’s 

center of gravity (CG), provided electrical power to the wing-mounted motors powering the proprotors. A 

schematic of the vehicle propulsion layout is shown in Figure 5.  

 
Figure 5.  Schematic of the propulsion layout with gearboxes connecting cross-shafted proprotors 

(motors are denoted as “engines” for consistency with NDARC terminology). 

The gearboxes connecting the proprotors contain two gear ratios. The first gear ratio, for hovering and 

vertical takeoff and landing operations, sets the proprotor tip speeds to 550 ft/s. The second gear ratio, for 

climb and cruise, reduces the proprotor tip speeds because the required proprotor thrust in cruise is 

significantly less than in hover: in hover, the proprotors must produce enough thrust to overcome the 

vehicle's weight; in cruise, the proprotor thrust only needs to overcome drag. Reduced proprotor thrust at a 

fixed tip speed results in reduced blade loading, such that the proprotor blade airfoils operate at a reduced 

L/D (assuming the proprotor was designed for hover). Therefore, reducing the cruise tip speed as compared 

to hover increases blade loading, allowing the proprotor blade airfoils to operate at a higher L/D, which 

results in better propulsive efficiency. In addition, the best blade twist distributions for both hover and 

cruise are closer to each other when the cruise rotational speed is slowed compared to hover. However, the 

optimum cruise tip speed is not obtained by arbitrarily setting the cruise tip speed as low as possible; for 

example, reducing tip speed while keeping power constant increases the required motor torque, and, at low 

rotational speeds, the proprotor blades will eventually reach impractical blade loadings. To determine a 

good, although not necessarily optimal, tip speed, an off-design mission was run in NDARC that entailed 

the cruise flight segments only: the cruise tip speed was adjusted from 200 to 375 ft/s in intervals of 25 ft/s. 
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For the proprotor described in Section 6.3, it was determined that a tip speed of 300 ft/s offered the best 

cruise efficiency. Reducing cruise tip speed from 550 ft/s to 300 ft/s reduced cruise energy burn by 

approximately 8.7%. In comparison, a 200 ft/s cruise tip speed provided a 3.8% reduction in energy burn, 

and a 375 ft/s cruise tip speed yielded an 8.3% reduction in energy burn, relative to the 550 ft/s baseline. 

From this initial NDARC model, parallel trade studies were then performed to determine an appropriate 

drive system and an appropriate number of proprotors on the main wing. Two drive systems were compared, 

referred to here as the “gearbox-drive” and “direct-drive” systems. The “gearbox-drive” system utilizes the 

system depicted in Figure 5: each proprotor is connected to its respective electric motor via a two-speed 

gearbox, each gearbox on the main wing is connected by cross-shafting, and each gearbox on the horizontal 

tail is connected by cross-shafting. The “direct-drive” system directly connects a proprotor to its respective 

motor and there are no gearboxes or cross-shafting present. A schematic of the direct-drive vehicle 

propulsion layout is shown in Figure 6.  

 
Figure 6.  Schematic of the propulsion layout with direct drive proprotors. 

Vehicles with cross-shafted propulsion systems were considered during early configuration trades of the 

tiltwing vehicle for several reasons. First, cross shafted propulsion systems typically reduce the need to 

oversize propulsion systems for conditions when one motor is inoperative. Second, cross shafting often 

serves an additional purpose on tiltwing vehicles: to maintain proprotor blowing over the full span of the 

wing even in the event of an engine/motor failure. A tiltwing often relies on the blowing effects of the 

proprotor slipstream on the tilting wing for yaw control and to reduce separation over the wing during 

transition between cruise and VTOL modes; therefore, the operational implications of the loss of one motor 

can be more significant than for vehicles which do not have tilting wings.  

A gearbox-drive system without cross shafting was not considered due to recent advances in electric motors 

with high torque-to-weight ratios. Motors utilized to propel aircraft must have high power-to-weight ratios 

to be viable. Motor power is proportional to torque multiplied by rotational velocity; a motor producing 
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half the torque of another must rotate its output shaft twice as fast to produce the same power. Traditionally, 

electric motors have had low torque-to-weight ratios, referred to as specific torque, so high power-to-weight 

electric motors have generally relied on high shaft rotation rates. The shaft rotation rates required to produce 

high power-to-weight ratios have, in general, been far higher than the desirable rotational speeds of 

propellers or rotors. Gearboxes are characterized by high specific torques [22], so electric aircraft have 

often coupled a fast-spinning, high power-to-weight electric motor with a gearbox to reduce motor shaft 

speed and increase torque. However, recent developments in axial flux permanent magnet electric motors 

designed for aircraft, such as the Siemens SP200D [23], reach specific torque ranges that open new design 

spaces in which direct-drive electric aircraft are feasible. 

For both the gearbox-drive and direct-drive vehicles, three NDARC models were developed, with either 

four, six, or eight proprotors placed on the main wing; all models utilized two tilting proprotors located at 

the tips of the horizontal T-tail. The six unique NDARC models sized their respective vehicles to the sizing 

mission, and the six resulting vehicles were evaluated based on factors such as weight, cruise speed, 

efficiency, resemblance to industry concepts, and size. During the comparisons, certain vehicle parameters 

were maintained consistent across all six NDARC models: 

• Hover disk loading of all proprotors was set to 30 lb/ft2 (note that later in the design process, the 

disk loading was set to 20 lb/ft2 to improve hover efficiency) 

• Propotor tip speeds 

• Wing and tail aerodynamic coefficients 

• Wing aspect ratios were maintained below approximately 15. 

While several design parameters were maintained consistent across all NDARC models, other 

configuration-specific parameters were adjusted for each NDARC model: 

• All electric motors and proprotors on a vehicle were identical (except for spin direction) 

• Wing spans were set based on the number of proprotors on the main wing, given that proprotors 

were aligned such that the disks were tangential as viewed from the front 

• Aircraft CG locations were adjusted to balance pitching moments 

• A baseline wing loading of 60 lb/ft2 was initially selected based on the XC-142A and CL-84 wing 

loadings, but reduced to 40 lb/ft2 in later iterations 

• The fraction of design gross weight carried by the main wing in cruise was set to be equal to the 

fraction of design gross weight carried by the main wing proprotors in hover; similarly, the tail lift 

in cruise was set equal to the lift of the tail proprotors in hover. 

After initial comparisons of the six models, it was apparent that the level of effort required to compare 

modern cross-shafting and gearboxes against modern motor technology was beyond the scope of this effort. 

Many current electric VTOL industry concepts are direct-drive vehicles so only the three direct-drive 

vehicles were considered further in this work. However, determining the appropriate propulsion system is 

an important trade study that warrants further research, particularly in assessing the applicability of 

NDARC's existing gearbox and motor models to UAM vehicles. 

The lack of cross-shafting in the three remaining vehicles means that if one proprotor fails, the remaining 

proprotors must be able to maintain hover for some amount of time. (The required hover duration will likely 

be dependent on regulations and operating conditions). In normal operating conditions, all of the proprotors 

provide the same amount of thrust in hover. The most constraining failure mode resulting from the loss of 

one proprotor occurs when a tail proprotor is lost: the remaining proprotors must provide enough thrust to 

maintain steady level hover with only a single tail proprotor. In this scenario, the remaining operational tail 

proprotor must be able to produce a thrust that is at least twice its typical hover thrust in order to maintain 

pitch control, which is particularly challenging for the vehicle with four main wing proprotors because the 

required thrust is 33% of the vehicle gross weight. Because all motors and proprotors on the vehicle are 

identical, all of them must be significantly oversized, which precluded the vehicle with four proprotors on 

the main wing from further consideration. 
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The weight and size of the remaining two vehicles (the variants with six and eight proprotors on the main 

wing) were compared to identify which vehicle would be the design utilized in further development 

processes. The vehicle with eight main wing proprotors demonstrated improved cruise efficiency but was 

heavier than the vehicle with six main wing proprotors because of the increased number of 

proprotors/motors and increased main wing structural weight. Additionally, fitting eight proprotors onto 

the main wing (with fixed disk loading) resulted in a vehicle span, inclusive of wingtip proprotors, of over 

65 ft. This is larger than commonly accepted within the community; for example, Uber Elevate suggests an 

upper limit on vehicle footprint of 50 ft, including fully extended rotors [24]. The excessive wing span and 

additional weight of the vehicle with eight proprotors on the main wing led to the selection of the direct-

drive vehicle with six proprotors on the main wing for further development. 

The proprotor disk loading in hover was later reduced to 20 lb/ft2 to be more representative of proposed 

industry concepts [25] [26]. This is an important subject of future trade studies: high disk loading is desired 

to reduce separation over the wing and, therefore, buffet during descent and transition; however, increased 

disk loading also increases power requirements, increases noise, and worsens disturbance on the ground 

due to increased downwash velocity during takeoff and landing. Ref. [27] suggested that, with high-lift 

devices at both the leading and trailing edges of the wing, a minimum disk loading of approximately 50% 

of wing loading was required to maintain acceptable descent and transition characteristics. The XC-142A 

and CL-84 had disk loadings of approximately 50 and 35 lb/ft2, respectively, and wing loadings of 65 lb/ft2 

and 62 lb/ft2, respectively, resulting in ratios of disk loading to wing loading of approximately 75% and 

56%, respectively. The present tiltwing design uses a wing loading of 40 lb/ft2, resulting in a ratio of only 

50%; it is recommended that future trade studies assess the implications of this ratio on vehicle transition 

characteristics.  

6.1.2 Analysis Specific to Electric Propulsion 

6.1.2.1 Wire weight estimation 

Modeling of electric wire weights is not currently available in NDARC 1.14, so the additional weight must 

be added manually. An iterative process was carried out to estimate the weights of the electrical wires which 

carry current from the battery banks to the electric motors. First, the locations of the electric motors relative 

to the vehicle CG, where the battery bank is located, were determined from NDARC. With relative locations 

known, the total wire length was estimated and then multiplied by 0.62, which is the reported weight in 

pounds per foot of EXRAD XLX-3/0X SAE Shielded Battery Cable [28]. This cable was chosen because 

it is rated for voltages up to 1000 volts and currents of 225 amps, which is in the range of voltages and 

currents that are expected from an electric motor incorporated on the vehicle. The estimated wire weight 

was then added to the plumbing weight in the NDARC “FuelTank” quantity, which corresponds to the 

vehicle battery model, and a new vehicle model was determined in NDARC based on the new weight inputs. 

This process was repeated manually until the percentage difference in wire weights between iterations was 

below 1%. Additionally, 15 lb was included for each electric motor to account for the motor controllers. 

The weight of the motor controller is based on the weight of the Drivetrain Innovation HV-500, which is 

recommended by EMRAX for use on their electric motors in the required power range [29]. An updated 

version of NDARC (1.15) has since been released which can automatically calculate the wire weight by 

multiplying the user input or NDARC calculated wire length by 0.62 lb/ft.  

6.1.2.2 Electric motor sizing 

To estimate the weight of high torque-to-weight electric motors, NDARC utilizes a power regression model 

derived from a subset of high torque-to-weight electric motors in the existing NDARC electric motor 

database. These motors have peak powers and peak torques ranging from 20 to 540 hp and 15 to 61,000 ft-

lb, respectively [6].  The existing power regression available in NDARC takes the peak torque of the motor 

as the input and outputs the motor weight with an average error in weight of 21.8% [9]. The peak torque of 

an electric motor can be greater than four times higher than the maximum continuous torque, and the time 

that a motor can operate at its peak torque can range from a few seconds to a few minutes; this timeframe 
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is highly dependent on external factors such as ambient air temperature and air density [29]. The large 

variance in reported peak torque run times makes it difficult to definitively state that a motor sized by a 

regression model of peak torque vs weight can operate safely. To avoid this concern, it was determined that 

the motors would be sized based on their maximum continuous torque. However, the ratio of maximum 

continuous torque to peak torque can significantly vary between motors, which meant that the existing 

NDARC regression model was not the best representation of probable motors. Thus, an alternative model 

was developed. The alternative regression model was developed by adding the Siemens SP70D, SP200D, 

and SP260D motors to the NDARC electric motor database and then removing all except the 30 electric 

motors with the highest specific continuous torque [23]. Figure 7 compares the alternative regression model 

with the original NDARC model. 

 
Figure 7.  NDARC regression model, in blue, and alternative regression model, in red, for motor 

weight as a function of torque. Peak torque and respective weights are represented by blue circles. 

Maximum continuous torque and respective weights are represented by red asterisks. 

The updated electric motor weight equation, represented by the dashed blue line in Figure 7, is 
𝑊 = 0.5663𝜏0.8207 , (1) 

where, 𝑊 is the motor weight, 𝑅2 is the coefficient of determination, and τ is the maximum continuous 

motor torque. The weight of the electric motors was adjusted in the NDARC model by applying constant 

multipliers to the electric motor weight equation; these constant multipliers are referred to as tech factors. 

The process for updating the tech factors was as follows: the estimated electric motor weight from an initial 

NDARC run was compared to the estimated weight from Eq. 1. If the percent difference between the electric 

motor weight estimates was over 1%, then the NDARC tech factor was updated by multiplying the tech 

factor by the weight estimated from Eq. 1, and dividing by the weight estimated from the current NDARC 

run. The process was repeated with the updated tech factor until the percent difference was below 1%.  The 
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tech factor used in the final NDARC model was 1.322. An additional regression analysis on the maximum 

continuous specific torque motor database was performed to determine motor diameter, D, and motor 

length, L, resulting in the respective regression models: 
𝐷 = 3.2182𝜏0.2332  (2) 
𝐿 = 0.8181𝜏0.3094 , (3) 

which provide the dimensions in feet for input torques in ft-lb. From the regression models for diameter 

and length, the motor on the final vehicle OpenVSP model had a diameter of 1.12 ft and length of 0.46 ft. 

Because there was no cross-shafting in the vehicle, it was necessary to determine if the vehicle could 

maintain a steady level hover after a single proprotor failure. For normal hover operations with all 

proprotors operational, each motor operated at 100% of maximum continuous power (MCP). To simulate 

failure of a main wing proprotor, two proprotors were stopped: the proprotor that had just become 

inoperative, and its counterpart on the opposite side of the vehicle to eliminate the rolling moment generated 

from one side of the vehicle producing more thrust than the other. By running an off-design mission in 

NDARC, it was determined that, if proprotors one and two were stopped (see Figure 6), the vehicle could 

maintain hover by increasing the electric motor power to the remaining four main wing motors to 142% 

MCP while operating the tail proprotors at 105% MCP. If proprotors three and four or five and six were 

stopped, the vehicle could maintain hover by increasing the electric motor power to the remaining four 

main wing motors to 146% MCP while operating the tail proprotors at 94% MCP. Note that tail motor 

operation is not fixed at full 100% MCP for each failure case, because the main wing proprotors have swept 

longitudinal positions.  

A similar analysis was conducted for the case of a tail proprotor failure in hover. To maintain rolling 

moment control, the opposing inboard main wing proprotor was also stopped, i.e., either proprotors seven 

and six, or eight and five, were stopped. In these scenarios, the remaining tail motor must provide 205% 

MCP to maintain hover, while the five remaining main wing motors must provide 116% MCP.  

It is possible for electric motors to produce power that is upwards of 200% MCP for “a few seconds” [29]. 

Further studies beyond the scope of this paper are necessary to determine if the motors can sustain these 

power levels for a sufficient timeframe to enable safe operations, or if the motors’ power capabilities need 

to be increased. For the purposes of this paper, the baseline motors described above were used, without 

increasing motor power or cross-shafting. 

6.2 Structural Analysis 

As is the case with many novel aircraft types under consideration for UAM applications, there are features 

of this aircraft concept which do not line up well with empirical databases from which the available 

conceptual weight estimation techniques have been derived. Credible weight estimations are of particular 

importance to electric and hybrid-electric aircraft due to to their sensitivity to weight growth.  

A particular area of uncertainty in this vehicle is the empennage and its associated proprotor mounts. 

Although well-established empirical trends are available for a T-tail configuration (NDARC can apply those 

from Torenbeek [30] or Raymer [31]), and some aircraft have propulsors mounted on the vertical tail (for 

example, the Britten-Norman BN-2A Mk III Trislander [32]), the number of aircraft with lifting and/or 

tilting propulsors mounted to a tail is very small. There were three peculiar load cases of initial concern for 

this tail arrangement: 1) symmetric vertical loading of the tail by the proprotors for flight and maneuver; 2) 

asymmetric vertical loading of the tail by one proprotor for maneuver or contingencies during which one 

tail motor or proprotor was degraded; and 3) proprotor-induced whirl flutter of the empennage. In addition 

to the vertical and horizontal tails themselves, the large longitudinal offset between the tail proprotors and 

their attachments to the horizontal tail require a cantilevered beam-like structure for the nacelle, rather than 

one which is primarily designed to resist axial loading and smaller inertial vertical loads. These 

considerations place additional static and dynamic design constraints on the aircraft. 
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To allow some consideration of the weight of vertically loaded wings which are able to mitigate proprotor 

whirl-flutter during early conceptual design trades, the horizontal tail was modeled in NDARC as a “Wing” 

component, and a tiltrotor weight model was applied. Although the tiltrotor weight model is expected to 

capture some of the design sensitivities of the horizontal tail with tilting proprotors, the horizontal tail is 

utlimately much smaller than the tiltrotor wings contained in empirical databases, and the tiltrotor weight 

model does not account for interactions between the aft fuselage, vertical tail, and horizontal tail. 

Consequently, a more thorough analysis was performed. 

6.2.1 M4 Structures Studio Modeling 

M4 Structures Studio (M4SS) version 4.0 was used to perform structural analysis on the tiltwing reference 

vehicle. The OpenVSP model is shown as a simplified representation in Figure 8, with M4SS sketch points 

depicted as fuchsia-colored spheres. As the vehicle resizes to accommodate design changes, the sketch 

points follow. Topological changes, such as changing the number of spars or ribs, or adding or deleting 

geometric entities, require separate models to be defined. Of note are that for items with left-right symmetry, 

only the positive y-side sketch points need to be specified. 

 
Figure 8.  Tiltwing aircraft in hover mode, with M4SS sketch points shown as fuschia-colored dots. 

The three peculiar tail load cases are presented in Figure 9, Figure 10, and Figure 11. The symmetric 2g 

jump takeoff shown in Figure 9 represents a typical load case for sizing tiltrotor aircraft, where a sudden 

increase in proprotor collective can generate substantial initial vertical acceleration. The asymmetric load 

case shown in Figure 10 represents either an extreme maneuver case in vertical flight, or the contingency 

condition when a motor or proprotor on the tail is degraded or failed. The asymmetric case with only one 

tail proprotor functioning is peculiar to distributed electric propulsion, where a planned failure contingency 

is to allow the functioning proprotor to take on a higher thrust for a short time to enable safe, controlled 

flight to a selected landing location. Both of these cases were evaluated as static loadings and determined 

the required strength of the structure. The proprotor whirl flutter case shown in Figure 11 represents a 

dynamic load case with coupling among inertia, stiffness, and proprotor aerodynamics, possibly including 

complex kinematic relationships that are necessary for capturing the forcing from the proprotor, and can 

ultimately lead to negative damping (i.e., instability).  
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Figure 9.  Symmetric 2g jump takeoff hover mode load case. 

 
Figure 10.  Asymmetric vertical flight tail loading. 

 
Figure 11.  Proprotor whirl flutter dynamic load case. 
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In order to achieve reliable predictions, extra care must be given to dynamic load cases such as proprotor 

whirl flutter (for a recent example with hingeless proprotors, see Ref. [33]). Inattention to seemingly minor 

details, such as the alignment of structural load members, can influence stability margins. For example, 

when designing the vertical-to-horizontal tail attachment, the preferred placement of spars on each flying 

surface in isolation may be different than when they are designed to be attached. An example of the 

consequences of failing to align structural members is the early OV-10 tail [34] where a skin panel was 

transmitting loads between spars, resulting in an unexpectedly low flutter speed. Another example of the 

dominance of flexible sub-elements is the early motor mount design of the NASA X-57 electric motor 

nacelles [35]. Like this tiltwing concept, the X-57 has long nacelles with electric motors mounted at the 

ends, which directly couple to proprotors [36]. A NASTRAN model of the X-57 captured membrane motion 

of the firewall mount, predicting a critical frequency much lower than had been predicted by more 

simplified methods which had assumed a rigid mount. Whirl flutter predictions were beyond the scope of 

this initial design, and will be examined in future design activities. 

Despite the limitations of only having conceptual-design-level information at this stage of the development 

process, the structural design methods using shell, beam, and rod elements employed in M4SS and 

NASTRAN have been seen to produce predictions within the bounds of conceptual design. This was 

supported by several VTOL validation cases studied by M4 under SBIR contracts: the XV-15 and MV-22B 

tiltrotors, XH-59A compound helicopter, UH-60A single main rotor helicopter, and CH-47D tandem 

helicopter [16]. All of these aircraft were primarily metal, except for the MV-22B which has a largely 

composite airframe. The accuracy of predictions for newer composite VTOL airframes is unknown at this 

time; however, M4 has applied the methodology to fixed-wing aircraft with co-cured and cored composites 

with good success.  

The M4SS model of the aircraft includes both a helicopter mode and airplane mode finite element mesh. 

Each mesh was driven from the same OpenVSP model, but with different export settings. Current 

limitations of M4SS with regards to variable geometry meant that the main wing had to be modeled as two 

separate entities: the parametric placement of sketch points allowed the same spanwise (U) and chordwise 

(W) coordinates to be used for placement on each instance of the wing, but the projection axis (i.e., the 

direction a structural component projects inward from outer mold line, where z- is for airplane mode and 

x- is for helicopter mode) was different for each. Selecting the y-axis as the projection axis for the proprotor 

supports allowed the same entities to be used for each mode, but the sketch files needed to be exported 

separately for helicopter and airplane mode. M4SS was not applied to the proprotors themselves as their 

design criteria and dynamics require different design approaches. 

6.2.2 Structural Design Approach 

A semi-monocoque composite primary structure was defined for weight estimation. The structural design 

approach, material properties, and allowables for the tiltwing were consistent with those used for other 

NASA UAM reference vehicles during the M4 SBIR contract [16] [37]. The primary load bearing elements 

in the fuselage and proprotor supports were stressed skins, ring stiffeners, floors, and beams.  

The skins, bulkheads, and floors were made from a sandwich construction with three layers of carbon fiber 

on either side of a honeycomb core; Figure 12 illustrates the material orientation of the composite panels. 

The outermost layers (Layers 1 and 7, shown in red) are made from unidirectional fibers and consist of two 

or more plies of material. Inside of these outer layers are two layers of plain weave material, at 0/90 and 

+/-45 degrees. A central honeycomb core of aramid material is Layer 4. For wing structures, such as the 

tilting wing, vertical tail, and horizontal tail, the structure is made up of skins, ribs, and spars, each of which 

is composed of a sandwich composite similar to the skin material. For strength-sized minimum-weight 

optimization, minimum layer thickness and maximum allowable principal stress in Layers 1 and 7 of the 

composite panels were the constraints. Further analysis may be performed to consider variations in the inner 

layers as well, but this optimization was consistent with previous M4SS work on UAM vehicles. 
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Figure 12.  Layers of composite finite elements used for skins and webs. 

In the M4SS representation of the aircraft, there are several types of elements used to represent aircraft 

structural entities, and the FRAME, RING, ROD, RAIL, BEAM and SKIN elements have been used for 

this model. FRAME features comprised of RING elements in the fuselage are aluminum and modeled as 

ROD elements, which are circular cross-section rods as shown in Figure 13, with the diameter as a design 

variable. These RING elements maintain the cross-sectional shapes of the fuselage and transmit loads 

circumfrentially. The RING elements are located at several station lines in the fuselage, helping to carry 

loads, such as those between the wing and landing gear and the attachment of the vertical tail to the aft 

fuselage. RAIL elements connect each side of the skins perpendicular to the sketch plane, and support 

payload and features, such as the floor and ceiling BEAM elements. The RAIL elements are aluminum T-

sections with the height of the web and width of the flange as design variables (DIM1 and DIM2 

respectively in Figure 14). For sizing, minimum dimensions and maximum stress in the ROD or RAIL 

elements were used as the design constraints. Both the FRAME and RAIL components are NASTRAN 

PBARL type elements. 

 
Figure 13.  ROD element cross section. 

 
Figure 14.  RAIL element cross section. 

The labels shown in red text in Figure 13 and Figure 14 are design variables used in the sizing optimization. 

In general, thicknesses of layers and webs may be specified as design variables; the SOL 200 operation in 

NASTRAN performs the optimization. The fuselage sketch plane and structural element definition are 

shown in Figure 15. The large cutouts for the windscreen and side doors are depicted as unfilled regions. 

The sketch points are black circles and are projected perpendicular to the sketch plane to the 

stereolithography file format (STL) geometry. The intersection of a sketch point projection and the STL 

geometry defines the endpoint of a finite elment mesh entity. The green triangular elements are SKIN3, the 

blue quadrilateral elements are SKIN4. The skin elements are used to produce the outer mold line shell 

elements of the finite element mesh and populate the properties of those elements. The red lines are BEAM 

definitions and these create projections perpendicular to the sketch plane for shell elements which connect 

the near and far side of the STL as viewed in the figure. The orange double lines are FRAME definitions. 

DIA DIM4
DIM2

DIM1

DIM3
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These FRAMES are the RING elements which maintain cross section shape and also transmit loads. 

Distinct design regions have been identified for varying material properties during optimization; design 

regions are segmented into regions divided by station line (x-coordinate).  

 
Figure 15.  Fuselage sketch plane features. 

The assembled set of sketch plane definitions for the aircraft in helicopter mode is shown in Figure 16. In 

particular, the root trailing edges of the tilting wing were removed because tilting would cause mechanical 

interference with the fuselage. The tilt axis coincides with the aft shear web location of the wing, which has 

a box beam spar design. The red lines running approximately vertical on the wing in helicopter mode 

correspond to BEAM elements for ribs to maintain the airfoil shape and mount components, such as the 

proprotor supports and control surfaces. The red lines running approximately spanwise on the wing are 

BEAM elements which are forward and aft shear webs of the wing spar. At the root of the wing, the aft 

spar is no longer swept spanwise, to provide a straight hinge line in helicopter and conversion modes and 

to better carry the bending load in airplane mode. The wing tilt actuator is attached to the wing at the 

intersection of the forward spar and central rib. For helicopter and airplane modes, the wing is attached to 

three points on the fuselage: the wing actuator attachment point, and the left and right hinge points. The 

hinge points on the fuselage are located near the corresponding intersections of wing ribs and the aft spar 

shear web.  

 
Figure 16.  M4SS model in helicopter mode. Sketch planes POINT, SKIN3, SKIN4, FRAME, and 

BEAM shown. 
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The centerline of each proprotor support coincides with a wing rib. Each proprotor support has two BEAM 

elements (similar to bulkheads) which intersect with the wing forward and aft shear webs to achieve load 

transfer and stiffness. The intersections of red lines (each red line representing a BEAM) in Figure 16 show 

how these features have been placed to coincide. 

The vertical tail has a forward and aft spar shear web modeled as BEAM elements, and the intersection of 

these shear webs with the fuselage coincides with the location of FRAME RING elements in the fuselage 

to enable load transfer. Similarly, forward and aft shear webs of the vertical tail coincide with the forward 

and aft shear webs of the horizontal tail. A central rib in the horizontal tail and a tip rib in the vertical tail 

are also located at the vertical-horizontal tail intersection to enable load transfer and stiffness at the joint. 

The STL mesh from OpenVSP is shown overlaid on the sketch planes in Figure 17 (a). The STL geometry 

represents the outer mold line of the vehicle components and maintains sufficient accuracy to generate finite 

element meshes of either coarse or fine geometry. For this exercise, a coarse mesh was generated for the 

fuselage with finer meshes for the wing-like surfaces and proprotor supports. The projection of points from 

the sketch plane onto the STL geometry results in vertices of the FEM mesh, as shown in Figure 17 (b). 

The FEM mesh alone is shown in Figure 18 with element lines outlined in black. 

  
(a) (b) 

Figure 17.  M4SS representations with OpenVSP STL mesh (pink) shown overlaid on (a) sketch 

planes (blue), and (b) sketch planes (blue) and finite element mesh (green). 

 
Figure 18.  M4SS finite element mesh. 

The maximum principal strain allowed for the skin elements in all load cases was 0.004 (4000 microstrain), 

and, as can be seen in Figure 19, the maximum strain was well below the allowable strain. The load case 

shown has Proprotor 7 (right rear) operational and Proprotor 8 (left rear) inoperative. Since the peak strain 

is about 50% less than the allowable, the minimum gauge material constraint (0.014 inches thickness of the 
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outer unidirectional layer, which is approximately 2 plies of material) was actively sizing the structure. The 

highest strain is found near the forward attachment of the vertical tail to horizontal tail. The horizontal tail 

was designed like a tiltrotor wing and is somewhat thick at 18% thickness to chord; as a result, the strains 

are quite small. A thinner horizontal tail will be slightly lighter weight and have less drag and should be 

considered in future optimization efforts. For scale, the deflection is greatest for the proprotor support, as 

shown in Figure 20 (peak 0.23 feet at the forward end of proprotor 7 support). 

 
(a) Top right view 

 
(b) Bottom right view 

Figure 19.  Strain for proprotor 8 inoperative load case (0.002 peak strain, 0.004 allowable). 

 
Figure 20.  Deflection (ft) for proprotor 8 inoperative load case: top right view. 
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6.2.3 Structural Weight Estimates for Fuselage and Tail 

A comparison of various empirical tail weight estimates (using consistent technology factors of 1.0) is 

shown in columns 1-5 of Table 3. The two right-most columns of Table 3 compare the empirical “tiltrotor 

wing” estimate, initially used for NDARC sizing, with the estimate from M4SS. The estimates are also 

compared graphically for the vertical and horizontal tails individually in Figure 21 and Figure 21, 

respectively. The two right-most columns represent the highest weight estimates. Some of the other 

empirical relations (Raymer T-tail transport in particular) are being applied beyond their range of 

applicability for this small and low-speed aircraft. The sum of vertical and horizontal tail weight for the 

NDARC model with a vertical tail and tiltrotor wing is 161.8 lb, which is 22% higher than the 132.1 lb 

predicted by M4SS, using the 2g jump and OEI tail load cases.  

Table 3.  Comparison of Tail Weight Estimates 

 NDARC 

tiltrotor tail 

Torenbeek 

T-tail 

general 

Torenbeek 

T-tail 

transport 

Raymer T-

tail 

general 

Raymer  

T-tail 

transport 

NDARC 

tiltrotor wing 

for horiz. tail 

M4SS 2g 

jump & 

OEI tail 

Vertical tail (lb) 23.3 11.1 35.9 25.7 7.5 23.3 51.1 

Horizontal tail (lb) 27.7 10.8 33.2 29.0 1.7 138.5 81.0 

Total (lb) 51.0 21.9 69.1 54.7 9.2 161.8 132.1 

 
Figure 21.  Comparison of vertical tail weight estimates.  

 
Figure 22.  Comparison of horizontal tail weight estimates. 
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The fuselage was sized in M4SS to minimum gauge on the skins and metal components, following a method 

similar to that for empennage sizing. M4SS sizing predicted an optimized weight of 554.0 lb, essentially 

identical to 557.0 lb in NDARC with advanced composite rotorcraft technology factors of 0.76 for the basic 

structure and 0.90 for crashworthiness increment. Further exploration of minimum gauge and load cases is 

warranted to ensure that this result is not spurious. 

6.3 Proprotor Design and Aeroacoustic Predictions 

6.3.1 Design Methodology 

An initial proprotor was designed based on the target hover flight condition. An “optimum hovering rotor” 

design process [38] was performed under an assumption that the vehicle hover and vertical take-off phases 

would be the most demanding on the system in terms of power requirements. Table 4 provides the key 

geometric and operating condition parameters for the proprotor designs. Designs consisting of a blade 

count, 𝑁𝑏, of 5 and 8 with constant proprotor solidity, 𝜎𝑚𝑒𝑎𝑛, of 0.219 were considered. This solidity was 

chosen such that the hover loading on each blade was kept moderate (i.e., local blade section angles of 

attack were kept reasonable for both 5 and 8 blades), for a disk loading of 20 lb/ft2. The proprotor solidity 

was driven by a design target of constant blade section local angle of attack in hover between 5.0∘ ≤ 𝛼 ≤
10∘. This range of angles of attack were chosen in order to avoid stall conditions on the blade and achieve 

a near-optimal lift-to-drag ratio condition. A linear chord taper ratio of 3:1 was implemented for both 

designs, as well as a constant NACA 0012 airfoil profile along the entire blade span, for simplicity during 

this preliminary blade design. 

Table 4.  Optimum Hovering Rotor Design Parameters 
 Parameter Value 

Geometry Radius, 𝑅 (ft) 3.609 

 Solidity, 𝜎𝑚𝑒𝑎𝑛  0.219 

 Blade count, 𝑁𝑏 5, 8 

Operating Condition Thrust coefficient, 𝐶𝑇 0.027 

 Tip Mach Number, M𝑡𝑖𝑝 0.497 

Figure 23 provides plots of geometric properties and predicted aerodynamic blade angles in hover for the 

5- and 8-bladed proprotor designs. Figure 23(a) shows the optimum and simplified linear chord distributions 

for both proprotors, where 𝑐 is the blade chord and 𝑟 is the radial station. The results show that the simplified 

linear chord distributions achieve a close representation of the optimum distributions starting at 𝑟/𝑅 ≈
0.55. Figure 23(b) shows the geometric twist angle, induced flow angle, and effective angle of attack 

distributions along the blade span for the optimum designs. The optimum design method predicts a constant 

angle attack of 𝛼 = 7.6∘ along the entire blade span. Figure 23(b) also includes a PAS prediction of the 

local blade section angles of attack using the simplified linear chord distribution for the 5-bladed design 

(note that predicted angles are essentially identical for the 8-bladed design). The PAS results show close 

agreement with the optimum design angles of attack, with a slight increase in angles of attack for 𝑟/𝑅 ≤
0.3 due to the departure from the optimal design. This result provides a justification that a linear chord 

distribution is an appropriate simplification for this proprotor design condition, for the current level of 

fidelity of the tiltwing vehicle design. 

Due to the constant solidity between the 5- and 8-bladed proprotors, the aerodynamic performance 

characteristics (rotation rate, thrust, and mechanical power) remain approximately constant. Due to the 

reduced tip speed in cruise and the resulting very high cruise advance ratio, 𝐽 ≈ 3.0, a large change in 

proprotor collective angle is required between the VTOL and axial cruise phases of flight. Specifically, a 

net increase in collective, 𝛥𝐴0, of +37∘ is required between hover and cruise conditions. Figure 24 presents 

visualizations of the two proprotor concepts in both VTOL and forward flight (cruise) conditions. 
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(a) 

 

(b) 

Figure 23.  Proprotor geometry: (a) optimum hovering rotor design and linear chord 

distributions, (b) geometric and aerodynamic blade angles in hover for the 5-bladed proprotor.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 24.  Renderings of (a), (c) 5-bladed and (b), (d) 8-bladed proprotor designs: Images (a) 

and (b) represent VTOL conditions and (c) and (d) represent cruise conditions. 

A comparison of the PAS-predicted angles of attack along the blade span for the hover and cruise  phases 

of flight are provided in Figure 25. These predictions identify a potential drawback of the current proprotor 

design, because the cruise phase of flight results in additional drag on the proprotor blade for 𝑟/𝑅 ≤ 0.65, 

which is indicated by the negative angles of attack experienced by the blade sections in this region. It is 

expected that future design iterations with additional considerations for cruise flight; for example, utilizing 

a more efficient, cambered airfoil profile; will improve the proprotor performance in axial cruise flight. 
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Figure 25.  Predicted angles of attack of the 5-bladed proprotor during hover and 

cruise phases of flight. 

6.3.2 Acoustic Modeling 

The aerodynamic and tonal acoustic performance of the proprotors were estimated using the PAS 

component of ANOPP. Due to the relatively moderate blade loading conditions and low tip speeds 

associated with this vehicle, broadband noise is also worth considering. Therefore, the Broadband Acoustic 

Rotor Codes (BARC) suite was utilized for an initial estimate of the proprotor blade self-noise contributions 

to the total proprotor system noise. It is important to note that the noise predictions performed here were 

for a single proprotor in isolation; i.e., in the absence of additional vehicle airframe components. Therefore, 

it is logical to expect that the following noise predictions are nominal; the noise of the proprotors integrated 

onto the tiltwing would most likely be higher due to interactional noise mechanisms, such as proprotor-

airframe interactions, reflections, and scattering effects. Furthermore, all broadband noise predictions were 

computed under the assumption that the proprotor blades are “tripped,” or fully turbulent. This assumption 

is believed to be appropriate for the hover mode of flight, both because of the high Reynolds numbers 

experienced by the proprotor blades as well as the likelihood of atmospheric effects such as turbulence 

ingestion and blade wake interaction effects. This assumption results in a more conservative estimate of 

broadband noise levels that emphasize the middle range of frequencies (between 1 and 10 kHz). The 

applicability of this fully turbulent assumption to the axial cruise mode of flight is not currently known for 

a proprotor of this size; however, this assumption is maintained for consistency between the different 

conditions analyzed here. 

Figure 26 presents predicted acoustic spectra for the 5- and 8-bladed proprotor designs in both hover and 

cruise flight conditions. Note that for the proprotor in hover mode, these predictions are for a single observer 

located ten proprotor radii from the hub (approximately 36 ft) at an angle of 45 degrees below the proprotor 

plane; in cruise mode, the observer is located in the plane of the proprotor at the same radial distance from 

the hub. These different observer orientations were selected for the two flight conditions since they are 

more relevant to noise radiation to observers on the ground for the respective flight conditions. The results 

show similar spectral trends between the two proprotor designs, except for a considerable reduction in low 

frequency noise for the 8-bladed configuration. The overall noise levels in cruise are also seen to be 

dramatically lower than those in hover. This is due to the much lower tip speed of the proprotor (M𝑡𝑖𝑝 = 

0.27 versus 0.49) and reduced angles of attack experienced by the blades during this flight condition. 
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(a) 

 

(b) 

Figure 26.  Predicted acoustic 1/3rd octave-band spectra for the 5- and 8-bladed proprotor designs 

at 10 radii (~36 ft) from proprotor hub in (a) hover at 45° below the proprotor plane and (b) 

cruise flight conditions in the plane of the proprotor. 

A breakdown of the different noise source mechanisms for the two proprotor designs in hover is provided 

in Figure 27. This figure reveals that the spectra are dominated by broadband noise for both proprotor 

designs, with a more prominent tonal peak at 125 Hz for the 5-bladed proprotor, which corresponds to the 

blade passage frequency (BPF). While the 8-bladed design also shows a BPF tonal peak at 200 Hz due to 

the common rotation rate with a higher blade count, the peak is considerably lower in amplitude and barely 

contributes to the overall spectrum. There is also negligible higher harmonic content for both proprotors, 

with only a 40 dB contribution by the 2xBPF harmonic at 250 Hz for the 5-bladed proprotor design (and a 

negligible 2xBPF contribution at 400 Hz for the 8-bladed proprotor). This is because of the moderate 

loading experienced by each blade, even though the overall disk loading is rather high. 

 

(a) 

 

(b) 

Figure 27.  Breakdown of noise source contributions for the hover flight condition of the (a) 5-

bladed and (b) 8-bladed proprotor design. Note: prediction results at 45° below the plane of the 

proprotor; broadband predictions include self-noise due to the turbulent boundary layer (TBL), 

trailing edge bluntness (TEB), tip vortex formation (TVF), and the sum of the broadband 

components (BBTotal). 
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6.3.3 Preliminary Integrated Acoustic Levels 

Estimates of overall integrated levels are computed by an incoherent summation of the proprotor noise 

sources discussed in Section 5.3.2. One consequence of this type of summation is that it lacks the effects of 

relative phasing between the different proprotors. However, an incoherent summation is believed to be a 

reasonable first estimate because it approximates the case of random phase variations between proprotors.  

Table 5 presents integrated unweighted and A-weighted overall sound pressure levels (OASPLs) for a 

single 5- and 8-bladed proprotor (representative of the data shown in Figure 26), as well as for all eight 

proprotors on the vehicle at a larger observer distance of 500 ft (140 proprotor radii). Note that these levels 

do not account for atmospheric absorption, which is expected to decrease the levels at higher frequencies. 

Table 5.  Predicted Unweighted/A-weighted OASPL Values for Hover 

and Cruise Flight Conditions (dB/dBA) 

 Single Proprotor at 36 ft Eight Proprotors at 500 ft 

Flight Condition 𝑁𝑏 = 5 𝑁𝑏 = 8 𝑁𝑏 = 5 𝑁𝑏 = 8 

Hover, 𝜃𝑜𝑏𝑠 = −45∘ 85.1/85.2 84.9/85.7 71.1/71.2 70.9/71.7 

Cruise, 𝜃𝑜𝑏𝑠 = 0∘ 70.2/69.8 71.4/71.9 56.2/55.8 57.4/57.9 

The results of Table 5 reveal very similar integrated levels between the 5- and 8-bladed proprotors for the 

respective flight conditions, as well as between the unweighted and A-weighted acoustic metrics. 

Specifically, there is less than a 1 dB/dBA difference between the 5- and 8-bladed integrated levels in hover, 

and only a maximum difference of 2.1 dBA in cruise. This is attributed to two primary reasons: first, that 

the proprotors exhibit very similar broadband spectral content, and second, that the tonal noise content of 

the proprotors occurs at very low frequencies which are diminished by A-weighting.  

In addition, there is less than 1 dB difference between the unweighted and A-weighted integrated results 

for each condition. This is because the spectra are dominated by broadband noise that exhibit peak levels 

that approximately coincide with the peak weighting of the A-weighting curve. As was stated in Section 

5.3.2, this broadband-dominated behavior could change for the cruise flight condition. In other words, the 

fully tripped blade assumption may be inappropriate, which could yield more of an equal balance between 

the tonal and broadband noise sources. Future investigations, either experimentally and/or via high-fidelity 

simulations, will be required to fine-tune this type of broadband noise modeling. It is also important to note 

that although A-weighted levels are a useful acoustic metric, they do not necessarily reflect psychoacoustic 

properties such as annoyance for a vehicle of this type. Further, the levels reported are far-field noise levels, 

and do not correspond to levels expected for near-field propagation, such as those experienced by 

passengers in the vehicle cabin itself. 

6.3.4 Future Design Considerations 

The analyses performed in this section are intended to represent a first pass at designing a proprotor to meet 

the required lift/thrust performance of the tiltwing vehicle. Acoustics were kept in mind by designing a 

proprotor in hover that would keep the loading on each blade moderate despite a rather high overall disk 

loading. Future design iterations will consider more efficient, cambered airfoil profiles with reduced 

thickness, with the goals of reducing electrical power draw and thickness noise generated by the proprotors. 

It is also hoped that lower tip speeds in both phases of flight can be achieved to reduce overall noise levels. 

This is believed to be achievable both by airfoil selection and by increasing the proprotor solidity. 

Furthermore, although calculations of overall levels for the presented designs show the 5-bladed design to 

be slightly quieter in both phases of flight, this can be misleading from a psychoacoustic standpoint. In 

other words, a slightly higher OASPL for a proprotor that is dominated by broadband noise may be more 

preferable to the case of one with a lower OASPL that contains a prominent low-frequency tone. Therefore, 

designs of different blade counts still warrant consideration for future iterations. 
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6.4 Aerodynamic Analysis 

NDARC was originally developed to size traditional rotorcraft. Proprotor forces dominate when the tiltwing 

is in helicopter mode, and NDARC traditionally captures these well. However, there are no published 

NDARC models of vehicles similar to the tiltwing vehicle when in airplane mode, where proprotors blow 

the wing and tail. Therefore, of particular interest for the tiltwing vehicle was to study the accuracy of 

NDARC in representing airplane mode flight performance.  

This section describes: firstly, the aerodynamic inputs to NDARC specifically related to the tiltwing in 

airplane mode; secondly, the resulting aerodynamic outputs from NDARC; and thirdly, aerodynamic 

analyses performed on the tiltwing vehicle for comparison with NDARC outputs.  

NDARC release 1.14 was used to model the tiltwing vehicle. Improved understanding of NDARC’s ability 

to model airplane mode flight performance will aid in prioritization of future updates to NDARC. 

6.4.1 NDARC Aerodynamic Inputs 

The aerodynamic performance of a wing is defined in NDARC via a collection of user input parameters. 

Input parameters are set to a default value automatically, unless overwritten in the user’s NDARC input 

file. This section describes the decisions made and analyses performed in order to estimate relevant input 

parameters for the tiltwing concept; further details on the calculations performed by NDARC can be found 

in Ref. [10]. 

A wing, as defined in NDARC, must be symmetric about the vehicle centerline and is split into panels, with 

span, chord, taper, dihedral, and sweep as inputs for each panel. NDARC obtains the total wing 

aerodynamic forces by summing separate lift, drag, and moment values calculated for each wing panel. 

Three-dimensional wing aerodynamic coefficients are required to be identical for each panel of that wing. 

For the tiltwing main wing, three wing panels were input per semi-span, with proprotors located at the panel 

intersections and at the wingtip. The horizontal tail was represented as a second wing in NDARC with one 

panel per semi-span and a proprotor at each wingtip. The horizontal tail is modeled as a second wing 

because NDARC does not allow motors to be placed on tails, and the elevator is modeled as a flap.  

The key wing aerodynamic parameters input to NDARC are summarized in Table 6, and the following 

paragraphs define these parameters and describe the reasoning behind their values. Note that the coefficients 

listed in Table 6 apply to individual wing panels in their local wind axes. Note also that the local velocities 

seen by each wing panel can include interference effects, such as velocities induced by other wings or 

proprotors: the inflow velocity seen by each wing panel in NDARC is an average of the local velocity field 

after interference effects have been applied. Interference effects are discussed further in subsection 6.4.1.1. 

Table 6.  Aerodynamic Parameters Used as Inputs to NDARC 

 𝐶𝑙𝛼 (per rad) 𝛼0 (deg) 𝜏 𝐶𝐿𝑚𝑎𝑥  𝐶𝑀𝑎𝑐  𝐶𝐷0 𝑒 𝛼𝑠 (deg) 

NDARC default 5.73 0.00 0.25 1.5 0.0 0.01200 0.8 10 

Main Wing 

(GA(W)-1 Mod) 
6.10 -4.20 0.20 1.5 -0.1 0.00850 0.9 15 

Horizontal Tail 

(GA(W)-1 Mod) 
6.10 -4.20 0.10 1.5 -0.1 0.00987 0.7 15 

Vertical Tail 

(NACA 0020) 
5.70 0.00 0.25 1.0 0.0 0.02000 0.8 - 

The XC-142 [39] and CL-84 [40] both employed 18% thick NACA 6-series airfoils with design lift 

coefficients of 0.3 and 0.4, respectively. The GA(W)-1 airfoil [41], modified about the camber line to be 

18% thick (denoted “GA(W)-1 Mod”), was selected for the main wing and horizontal tail, due to its overall 

similar aerodynamic characteristics while having a slightly improved lift to drag ratio and blunt trailing 
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edge, combined with prior selection for propeller-blown wing applications such as Ref. [42]. Selection or 

design of a main wing airfoil suitable for all phases of flight warrants further research. A NACA 0020 

airfoil was selected for the vertical tail for structural rigidity. 

NDARC assumes a linear lift-curve slope up to a maximum wing lift coefficient. For each wing, user inputs 

to NDARC include a zero-lift angle of attack, 𝛼0, and a two-dimensional airfoil lift coefficient slope, 𝐶𝑙𝛼; 

these parameters were taken from XFOIL [43] predictions of airfoil performance. NDARC calculates a 

three-dimensional lift slope, 𝐶𝐿𝛼: 

𝐶𝐿𝛼 =
𝐶𝑙𝛼

1 + 𝐶𝑙𝛼
1+𝜏
𝜋𝐴𝑅

 , (4) 

where 𝐴𝑅 is the wing aspect ratio and 𝜏 accounts for non-elliptical loading. The value of 𝜏 was input by 

reference to Glauert [44] for a rectangular wing. Note that there are limitations associated with this estimate; 

for example, the effects of wing sweep and proprotor blowing are not accounted for, and the aspect ratio of 

the main wing is greater than those studied by Glauert. The unflapped three-dimensional wing maximum 

lift coefficient, 𝐶𝐿𝑚𝑎𝑥, was input as 1.5 [31]. 

The wing pitching moment coefficient about the mean aerodynamic center, 𝐶𝑀𝑎𝑐, was input as zero for 

symmetric airfoils and -0.1 for the main wing and horizontal tail based on Ref. [41]. 

Wing drag is calculated for all angles of attack. For angles of attack greater than an input transition angle, 

𝛼𝑡, NDARC has several methods available to account for “vertical drag” of a wing panel [10]. For the 

purposes of modeling this initial tiltwing vehicle, the main wing 𝛼𝑡 is set arbitrarily to 25 deg, the default 

NDARC value, because the local angle of attack seen by the main wing panels during the sizing mission is 

always less than 𝛼𝑡. 

For angles of attack less than 𝛼𝑡, profile and lift-induced drag coefficients are calculated and then summed 

to obtain total drag. The profile drag coefficient, 𝐶𝐷𝑝, was chosen to be constant and input as a zero-lift 

drag coefficient, 𝐶𝐷0, at angles of attack less than the defined separation angle of attack, 𝛼𝑠. A quadratic 

drag increase was implemented for angles of attack greater than 𝛼𝑠: 
𝐶𝐷𝑝 = 𝐶𝐷0(1 + 𝐾𝑠(𝛼 − 𝛼𝑠)

2) , (5) 

where the factor 𝐾𝑠 = 2 is default. For the sizing mission, the quadratic profile drag term is not applicable 

because the angles of attack are less than 𝛼𝑠.  

The lift-induced drag coefficient, 𝐶𝐷𝑖, is estimated with a span efficiency factor, 𝑒: 

𝐶𝐷𝑖 =
𝐶𝐿
2

𝜋𝑒𝐴𝑅
 , (6)  

where 𝐶𝐿 is the wing lift coefficient. The span efficiency factor accounts for the deviation of the wing lift 

distribution from an elliptical distribution and is typically between 0.9 and 1.0 [45]. However, for the 

tiltwing, the wing surface is blown by proprotors. Extreme blowing by high-lift propellers on a wing has 

been predicted to reduce span efficiency to the order of 0.5 or lower [46]. Therefore, it is desirable to 

consider the effect of the proprotors on the span efficiency of the main wing and horizontal tail. 

NDARC currently allows only a fixed input value of span efficiency for each wing; however, proprotor 

blowing velocity varies between mission segments. Because proprotor forces dominate in hover, a span 

efficiency value was chosen to best represent the cruise and climb phases of flight. The span efficiency 

factor was estimated by modeling all lifting surfaces of the tiltwing configuration (outputted by NDARC) 

in RoBIN. RoBIN outputs 𝐶𝐿 and 𝐶𝐷𝑖 for a given input geometry, so that the span efficiencies for the wing 

and tail were then calculated as: 

𝑒 =
𝐶𝐿
2

𝜋𝐶𝐷𝑖𝐴𝑅
 . (7)  

Solving for consistent span efficiency values between RoBIN and NDARC would be an iterative process: 

RoBIN would analyze sized wing, tail, and proprotor geometries from NDARC to derive span efficiency 
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values that, when fed back into NDARC, lead to a new sized geometry. To avoid this iteration throughout 

the following aerodynamic analyses, constant values of span efficiency were implemented for the wing and 

tail in NDARC, based on a RoBIN analysis of wing and tail geometry from early NDARC results. The 

constant values implemented in NDARC were 𝑒𝑤𝑖𝑛𝑔 = 0.9 and 𝑒𝑡𝑎𝑖𝑙 = 0.7. An analysis of the final 

NDARC geometry to verify performance metrics found that the span efficiencies predicted by RoBIN are 

0.893 in cruise and 0.879 in climb for the main wing, and 0.682 in cruise and 0.745 in climb for the 

horizontal tail. The sectional lift coefficients of the final wing and tail geometry for cruise and climb 

conditions as modeled in RoBIN are shown in Figure 28 and Figure 29. The proprotor root and tip locations 

are represented by dotted and dashed lines, respectively. 

 

Figure 28.  Spanwise sectional lift coefficient distribution of the main wing for cruise and climb 

conditions, as modeled in RoBIN. 

 
Figure 29.  Spanwise sectional lift coefficient distribution of the tail for cruise and climb conditions, 

as modeled in RoBIN. 
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The aerodynamic effects of trailing edge control surface deflections (limited to: flaps, flaperons, ailerons, 

and rudders) are estimated in NDARC by implementing empirical corrections to two-dimensional thin 

airfoil theory to calculate a change in three-dimensional aerodynamic coefficients and maximum lift 

coefficient [10]. Empirical corrections are formed from a linear fit to the combined average performance 

of plain, split, slotted, and double-slotted flaps. NDARC release 1.14 does not model leading edge devices 

nor differences in the effects of different types of trailing edge devices. 

NDARC estimates proprotor aerodynamic properties by applying a number of models, as detailed in Ref. 

[10]. Blade element theory is applied to estimate proprotor loads and flapping, and a surrogate model is 

applied for induced and profile power components. Proprotor wake is modeled as a skewed cylinder with 

the wake axis direction deduced from the aircraft velocity and the self-induced velocity at the proprotor 

disk. The wake contraction and velocity profile are deduced from vortex theory with an added user-defined 

parameter, 𝑡, to adjust wake contraction and velocity. The axial velocity inside the wake cylinder, 𝑤, is a 

function of induced velocity at the proprotor disk, 𝑣𝑖, distance along the wake axis, 𝜁𝑤, proprotor radius, 𝑅, 

and the user-defined rate of change parameter, 𝑡: 

𝑤 = 𝑣𝑖𝑓𝑤 = 𝑣𝑖 (1 + 
𝜁𝑤 𝑡𝑅⁄

√1+(𝜁𝑤/𝑡𝑅)
2
) . (8)  

In the current vehicle design, 𝑡 is set to the NDARC default value of 0.2. The wake radius, 𝑅𝑐, is deduced 

by conservation of mass for an open rotor as 

𝑅𝑐 =
𝑅

√𝑓𝑤
 . (9) 

6.4.1.1 Interference Velocities  

NDARC [10] can approximate the interaction between components by adding an “interference velocity,” 

which is induced by an affecting component, to the total velocity observed by an affected component. The 

magnitude of the interference velocity is adjusted by multiplying a nominal induced velocity relevant to the 

affecting component by a scalar, known as the “interference factor.” For example, in the case of the 

interference factor for the effect of the main wing on the horizontal tail (termed “wing-on-tail”), the nominal 

induced velocity produced by the main wing is the mean downwash (z-direction) velocity calculated as 

𝑉𝑧,   𝑖𝑛𝑑𝑢𝑐𝑒𝑑,   𝑤𝑖𝑛𝑔 = 𝑉
𝐶𝐷𝑖,𝑤𝑖𝑛𝑔

𝐶𝐿,𝑤𝑖𝑛𝑔
. (12) 

To determine the appropriate wing-on-tail interference factor, the main wing was modeled in isolation in 

RoBIN and 12 induced velocity samples were taken along where the quarter-chord of the horizontal tail 

would be located on the tiltwing vehicle. The mean of the z-component of the induced velocity samples 

divided by the nominal induced velocity, which was calculated from Eq. 12, gave a wing-on-tail 

interference factor of 1.59. This value appears consistent with the suggested front-on-aft wing interference 

factor of 2.0 for tandem wing configurations, and the suggested wing-on-wing interference factor of 0.7 for 

biplane wing configurations. The front-on-aft wing interference factor for a tandem wing configuration is 

expected to be larger than the wing-on-tail interference factor for the tiltwing vehicle because the rear wing 

of a tandem configuration is typically of equal span to the front wing and, therefore, in closer proximity to 

and more affected by the trailing vortices of the front wing. The tiltwing’s horizontal tail, being of shorter 

span than the main wing as well as being vertically displaced, is further removed from the main wing’s 

trailing vortices than a typical tandem wing and experiences less downwash. The tail-on-wing interference 

factor was left at zero, as recommended in [10]. 

The inflow velocity to the proprotor was taken directly from the global aircraft freestream velocity. NDARC 

models wing interference on the proprotor as an influence on the induced power of the proprotor. For this 

vehicle, the wing interference on the proprotors was assumed to be zero. For rotors in axial flight, NDARC 

does not account for interference induced by other rotors. Rotor-rotor interference factors can be set for 

hover and edgewise forward flight, but were not set for this tiltwing vehicle: the proprotor disks do not 
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overlap and are expected to only weakly interact in the hover configuration, and edgewise flight is not part 

of the sizing mission. 

Proprotor-induced velocities in NDARC depend on the axial velocity, 𝑤, computed by the proprotor wake 

model described in Section 6.4.1. The interference velocity, 𝑣𝑖𝑛𝑡, from the proprotor wake on a component 

is 
𝑣𝑖𝑛𝑡 = 𝐾𝑖𝑛𝑡𝑓𝑟𝑤 , (10) 

where 𝐾𝑖𝑛𝑡 is a user-defined empirical interference factor and accounts for the extent of immersion of the 

component in the proprotor wake, and 

𝑓𝑟 =

{
 

 
1 𝑟 ≤  𝑅𝑐

1 −
𝑟 − 𝑅𝑐
𝑠𝑅𝑐

𝑅𝑐 ≤  𝑟 ≤  (1 + 𝑠)𝑅𝑐

0 𝑟 ≥  (1 + 𝑠)𝑅𝑐

 , (11) 

where 𝑟 is the distance of the component from the wake axis in a reference frame aligned with the 

proprotor’s tip path plane and 𝑠 is a user-defined parameter to account for the transition from full velocity 

inside of the wake to zero velocity outside of the wake. In the current vehicle design, 𝑠 is set to the NDARC 

default value of 0.2. 

To account for the extent of the area of a wing panel immersed in the proprotor wake, the proprotor-induced 

interference velocity is calculated at several points along the span. A single estimated value of the 

interference velocity is then applied to the wing panel: NDARC computes the interference velocity that 

would provide a dynamic pressure equivalent to the average of the dynamic pressures at each of the points 

along the span. The NDARC rotor performance surrogate model predicts the ratio of actual induced power 

to ideal induced power at a rotor operating condition, and the value of actual induced power is used to 

estimate the effective non-uniform wake velocity. 

The interference factors, 𝐾𝑖𝑛𝑡, used in estimating the effects of the main wing proprotors on the main wing 

and the effects of the tail proprotors on the tail, were set to the NDARC default value of 1.0 because 

proprotor wake properties are already modeled in NDARC, so further scaling of the interference velocity 

was not necessary. 

6.4.1.2 Parasite drag buildup  

Parasite drag of the tiltwing vehicle was estimated by a component buildup method [31] utilizing the 

OpenVSP Parasite Drag Tool [47] as an aid. For each vehicle component, the parasite drag coefficient, 𝐶𝐷0, 

was estimated: 

𝐶𝐷0 =
𝑆𝑤𝑒𝑡 ∗ 𝐹𝐹 ∗ 𝑄 ∗ 𝐶𝑓

𝑆𝑟𝑒𝑓
 , (13)

where the wetted area, 𝑆𝑤𝑒𝑡, and reference area, 𝑆𝑟𝑒𝑓, were obtained directly from the vehicle geometry in 

OpenVSP; 𝐹𝐹 is a component form factor which estimates pressure drag due to viscous separation; 𝑄 is a 

scale factor applied to account for component interference drag; and 𝐶𝑓 is an equivalent flat plate skin 

friction drag coefficient. The total parasite drag of the tiltwing vehicle was estimated by calculating the 

parasite drag for each component, including accounting for proprotor blowing effects, and then summing 

the parasite drag of all components. 

Form factor equations were selected based on the characteristics of the wing and body components; 

equations for each component are shown in Table 7, where 𝑡/𝑐 is the thickness to chord ratio of the wing, 

𝑥/𝑐 is the location of airfoil maximum thickness, and 𝑙/𝑑 is the length to diameter ratio of the body. The 

form factor equations for the main wing, vertical tail, and horizontal tail components were sourced from 

Hoerner [48] while form factors for the fuselage and nacelles were sourced from Torenbeek [30]. The 1.05 

factor in the fuselage form factor calculation was added to Torenbeek’s equation to account for the pressure 

drag increment due to upsweep at the rear [30]. 
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Table 7.  Form Factor Equations 
Component Source Equation 

Vertical tail, horizontal tail Hoerner for 𝑥/𝑐 = 30% 1 + 2(𝑡/𝑐) + 60(𝑡/𝑐)4 

Main wing Hoerner for 𝑥/𝑐 = 40% 1 + 1.2(𝑡/𝑐) + 70(𝑡/𝑐)4 

Nacelles Torenbeek Streamlined Body 1 + 1.5(𝑙/𝑑)−1.5 + 3.8(𝑙/𝑑)−3 

Fuselage Torenbeek Streamlined Body 

with pressure drag factor 
1.05 [1 + 1.5(𝑙/𝑑)−1.5 + 3.8(𝑙/𝑑)−3] 

The interference drag multipliers, 𝑄, took recommendations from Raymer [31]. An interference drag 

multiplier of 1.0 was used for the wing and fuselage, 1.5 for the nacelles, and 1.05 for the vertical and 

horizontal tail. Blasius models for laminar [49] and turbulent [50] flow were implemented to estimate the 

flat plate skin friction coefficient, 𝐶𝑓. The main wing, horizontal tail, and nacelles are blown by the 

proprotors and, therefore, were assumed to be fully turbulent. The vertical tail was assumed to have 25% 

laminar flow based on the midpoint of a range suggested by Raymer [31]. The fuselage was considered to 

have 30% laminar flow; this is likely to be optimistic depending on location of windows and operating 

conditions [31].  

Due to the tiltwing vehicle having the wing, nacelles, and horizontal tail blown by proprotor slipstreams, 

three separate drag buildups were performed in the OpenVSP Parasite Drag tool, with the fuselage and 

vertical tail at freestream velocity; the main wing and main wing nacelles at freestream plus the average of 

the interference velocities as seen by the main wing panels in NDARC; and the horizontal tail and associated 

nacelles at freestream plus the interference velocity as seen by the tail panel in NDARC. The dimensional 

drag of the blown components and unblown components were summed to obtain the total parasite drag 

estimates shown in Table 8. 

Table 8.  Total Parasite Drag Estimates 

Condition 
Altitude 

(ft) 

Velocity 

(ft/s) 

Interference velocity 

on main wing (ft/s) 

Interference velocity 

on horiz. tail (ft/s) 
𝐶𝐷0 

Drag Estimate 

(lbf) 

Climb 8,000 186.3 13.11 12.09 0.0182 135.1 

Cruise 10,000 260.7 11.31 9.33 0.0308 228.4 

6.4.2 NDARC Aerodynamic Outputs 

A summary of aerodynamic parameters, that were output after NDARC analysis which included the inputs 

described in Section 6.4.1, is given in Table 9. 

6.4.3 Comparison of Outputs from NDARC and RoBIN 

RoBIN models vortex interaction between components, but its computational cost is too high to be used in 

a sizing loop. The thin surface representations implemented in RoBIN also limit its ability to accurately 

model thick bodies, such as the nacelles and fuselage. Therefore, RoBIN was initially utilized only to 

provide estimates of parameters related to interaction effects in an attempt to improve the accuracy of 

NDARC’s aerodynamic models. After NDARC produced a sized aircraft design, RoBIN predictions of 

aerodynamic performance were compared with NDARC. The collective pitch of each proprotor, as modeled 

in the presence of all lifting components, was adjusted in RoBIN to match the thrust output by NDARC.  

Because NDARC’s aerodynamic outputs are entirely dependent on lift and drag characteristic inputs and 

several of these inputs were derived from RoBIN, general agreement between RoBIN and NDARC 

predictions should be expected. Table 10 presents a selection of aerodynamic coefficients for the wing and 

tail as modeled by NDARC and RoBIN, where 𝐶𝑀𝑦 is the pitching moment. Agreement between the two  

sets of results are reasonably good overall; the largest discrepancies are seen in the 𝐶𝐷𝑖 values for the 

horizontal tail. 
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Table 9.  Summary of Aerodynamic Parameters Related to the Tiltwing Vehicle 

Aircraft parameters Hover 900 fpm Climb Cruise Cruise Reserve 

Wing tilt angle (deg) 90 0 0 0 

Time (min) 0.50 8.78 25.0 20.0 

Distance (nmi) 0.00 7.31 60.4 50.0 

Ground speed (kts) 0 100 145 154 

Disk loading (lb/ft2) 20.0 3.46 1.88 1.86 

Flap deflection (deg) 30 0 0 0 

Elevator deflection (deg) 0.000 -0.380 0.410 0.400 

Vehicle inclination (deg) -6.74 12.6 2.81 2.42 

Effective lift-to-drag ratio, 𝐿 𝐷⁄ e - 5.10 8.72 8.54 

Lift coefficient, 𝐶𝐿 - 1.63 0.873 0.912 

Drag coefficient, 𝐶𝐷 - 0.124 0.0767 0.0803 

% total sizing mission energy used 14.5 15.5 37.9 29.9 

Table 10.  Aerodynamic Coefficients for Wing and Horizontal Tail Modeled in NDARC and RoBIN 
 𝐶𝐿 

(RoBIN) 

𝐶𝐿 
(NDARC) 

% Diff. wrt 

NDARC 

𝐶𝐷𝑖  
(RoBIN) 

𝐶𝐷𝑖 
(NDARC) 

% Diff. wrt 

NDARC 

𝐶𝑀𝑦 

(RoBIN) 

𝐶𝑀𝑦 

(NDARC) 

% Diff. wrt 

NDARC 

Main wing 

(climb) 
1.137 1.192 -4.66% 0.0267 0.0287 -6.98% 0.944 1.057 -10.70% 

Horizontal 

tail (climb) 
0.181 0.177 2.12% 0.0152 0.0223 -31.95% -0.900 -0.810 11.05% 

Main wing 

(cruise) 
0.649 0.670 -3.06% 0.00891 0.00954 -6.54% 0.540 0.599 -9.75% 

Horizontal 

tail (cruise) 
0.105 0.106 -1.02% 0.00582 0.00823 -29.30% -0.520 -0.488 6.67% 

The inconsistency between the span efficiency’s derivation and application is believed to be the primary 

source of discrepancy between the RoBIN and NDARC tail 𝐶𝐷𝑖 values in Table 10. NDARC's tail 𝐶𝐿 is 

applied, and 𝐶𝐷𝑖 computed, in the reference frame of the local velocity, which includes interference effects 

that change the local velocity direction from that of the freestream velocity. This means that the span 

efficiency input into NDARC (to compute 𝐶𝐷𝑖) should be consistent with the tail 𝐶𝐿 and 𝐶𝐷𝑖 as defined in 

the local wind frame. However, such a "local velocity" is an abstract representation of the true conditions 

observed by the tail, and such a velocity cannot be directly measured or referenced in a flow solution such 

as the solution given by RoBIN. The only defined velocity in RoBIN is the global freestream so the span 

efficiency from RoBIN is calculated from 𝐶𝐿 and 𝐶𝐷𝑖 as measured in the global wind reference frame.  

The error in estimating the horizontal tail span efficiency does not appear highly significant to the overall 

design. For example, if the span efficiency of the horizontal tail was reduced by a factor of two in NDARC, 

the resulting 𝐶𝐷𝑖 was increased by approximately 32% over the baseline, but the corresponding increase in 

vehicle design gross weight was only 0.75%. 

7 Final Design  

The present design of the 6-passenger tiltwing concept is pictured in Figure 30. This design serves as the 

first iteration of the NASA tiltwing UAM reference vehicle. The attributes of this vehicle are provided in 

the comparison tables in Sections 7.1 and 7.2. 
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Figure 30.  Final 6-passenger tiltwing UAM concept. 

7.1 Updated Turboelectric Lift-plus-Cruise Reference Vehicle 

To match the assumptions applied in the design of this tiltwing vehicle, updates were made to several 

assumptions that had been applied to the turboelectric lift-plus-cruise vehicle described in Ref. [3]. In doing 

so, the turboelectric lift-plus-cruise vehicle grew from about 6000 lb to 8200 lb. Table 11 compares the 

turboelectric tiltwing and updated lift-plus-cruise vehicles side by side. Updated assumptions included: 

• Drag coefficients for the rotor hubs and supports were doubled. Previously, a very-low-drag design 

was assumed, which was not consistent with the drag predictions for the other reference vehicles. 

These new estimates better reflect the expected cooling drag required for electric propulsion. 

• Weights were estimated in M4SS, maintaining assumptions consistent with those described for the 

tiltwing aircraft. Previous lift-plus-cruise weight estimates were taken directly from empirical 

relationships in NDARC. 

• Wire weights were added, utilizing the same method as that determined tiltwing wire weights. 

• Electric motor power ratings for sizing were changed from maximum rated power (MRP) to 

maximum continuous power (MCP), consistent with the tiltwing. 

• Electric motor weight tech factors were set to 1.33, consistent with the tiltwing. 

7.2 NASA UAM Reference Vehicle Performance Comparisons 

The attributes of each aircraft in the reference vehicle fleet are highlighted in Table 12. Note that some of 

the assumptions used across the different reference vehicles are not consistent at this time. The single-main-

rotor helicopter is denoted “SMR;” the quadrotor is denoted “Quad;” the side-by-side is denoted “SbS;” the 

updated lift-plus-cruise is denoted “Updated L+C;” and the tiltwing is denoted “TW.” Propulsion systems 

include turboshaft (“TS”), fully electric (“E”), and turboelectric (“TE”). The term “lifter” is used to denote 

a rotor or proprotor in hover mode. 𝑞 is the dynamic pressure, 𝐶𝐷𝑓 is the skin friction drag coefficient, 𝑉𝑏𝑒 

is the speed for best endurance, and 𝐿/𝐷𝑒 is the effective lift to drag ratio. Note that the C-rate is denoted 

as zero for the turboelectric vehicles because the propulsion system is sized to provide a zero net battery 

charge/discharge rate for steady-state hover and cruise conditions. Also, estimates of rotor hub cruise drag 
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vary significantly between each vehicle because these drag models are related to rotor disk area or follow 

a square-cube relationship with vehicle weight. 

Table 11.  Comparison of Turboelectric Tiltwing and Updated Lift-plus-Cruise Vehicle Attributes  
Tiltwing Lift-plus-Cruise 

Main wing: span (ft) 44.4 55.7 

Area (ft2) 128 256 

Aspect ratio 15.3 12.1 

Number of (prop)rotors 6 8 

(Prop)rotor diameter (ft) 7.33 10.0 

Hover disk loading (lb/ft2) 20.0 13.1 

Hover tip speed (ft/s) 550 666 

Cruise disk loading (lb/ft2) 1.90 - 

Cruise tip speed (ft/s) 300 - 

Empennage: horizontal tail span (ft) 10.2 15.1 

Area (ft2) 32.4 53.1 

Number of prop(rotor)s 2 1 

Prop(rotor) diameter (ft) 7.33 9 

Hover disk loading (lb/ft2) 20 0 

Hover tip speed (ft/s) 550 0 

Cruise disk loading (lb/ft2) 1.90 12.6 

Cruise tip speed (ft/s) 300 600 

Vertical tail span (ft) 5.28 6.58 

Vertical tail area (ft2) 18.2 36.7 

Vehicle length (ft) 28.0 32.9 

Total deliverable power (hp) 2110 2720 

Total installed power (hp) 3550 4350 

Maximum gross weight (lb) 6750 8190 

Empty weight (lb) 5290 6700 

Structures weight (lb) 2030 2840 

Main wing weight (lb) 453 625 

Horizontal Tail weight (lb) 141 128 

Rotor group weight (lb) 232 848 

Propulsion weight (lb) 2230 2640 

Fuel system weight (lb) 620 746 

Drive system weight (lb) 158 433 

Systems weight (lb) 665 539 

Cruise airspeed (kt) 155 144 
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Table 12.  Comparison of Current NASA Six-Passenger UAM Reference Vehicle Attributes [3] 

Vehicle 

SMR 

TS 

Quad  

TS 

Quad   

E 

SbS   

TS 

SbS  

E 

L+C  

E 

Updated 

L+C  

TE 

TW  

TE 

Lifter disk loading (lb/ft2) 4.00 3.50 3.00 5.00 3.50 13.1 13.1 20.0 

Lifter radius (ft) 17.3 9.20 13.1 10.5 14.9 5.00 5.00 3.66 

Solidity, thrust-weighted 0.0666 0.0650 0.0550 0.0830 0.0580 0.267 0.217 0.247 

Hover tip speed (ft/s) 550 550 550 550 550 585 668 550 

Autorotation index 3.00 0.95 1.69 0.95 1.64 1.23 3.00 3.00 

Number lift engine/motor 1 1 4 2 2 8 8 8 

MRP power per lifter (hp) 221 76.0 168 232 214 139 154 277 

Number cruise engine/motor – – – – – 1 1 8 

Power per cruiser (hp) – – – – – 628 583 – 

Weight/lift power (lb/hp) 10.5 12.8 14.0 10.7 12.6 7.4 6.65 6.03 

Weight/cruise power (lb/hp) 16.9 13.1 18.4 16.9 24.4 24.9 22.5 20.3 

Cruise drag D/q (ft2) 5.54 7.20 12.9 5.30 7.50 16.9 12.7 7.05 

Fuselage cruise drag (ft2) 1.72 1.40 1.40 1.60 1.60 1.70 1.65 1.73 

Rotor hubs cruise drag (ft2) 1.58 1.60 3.23 1.00 2.10 3.14 3.22 1.68 

(D/q) / (W/1000)2/3 5.14 2.30 3.20 2.20 2.50 4.10 3.13 1.97 

C𝐷𝑓=(D/Q)/S𝑤𝑒𝑡 0.00640 0.00590 0.00800 0.00820 0.00950 0.0151 0.00845 0.00628 

Battery capacity (MJ) – – 1330 – 846 1440 262 213 

Battery weight (lb) – – 1570 – 997 1690 673 567 

Fuel tank capacity (lb) 168 179 – 147 – – 294 246 

DGW, W (lb) 3760 3740 6480 3470 4900 8210 8190 6760 

Empty weight (lb) 2370 2350 5270 2110 3690 7000 6700 5290 

Structures weight (lb) 1090 1100 1640 940 1240 2580 2840 2030 

Rotor group weight (lb) 279 325 628 196 345 948 849 232 

Propulsion weight (lb) 616 554 2670 522 1690 3190 2650 2230 

Fuel system weight (lb) 42.4 43.0 2040 38.0 1290 2200 747 620 

Drive system weight (lb) 196 254 397 195 255 358 433 158 

Systems weight (lb) 498 502 536 501 507 540 539 665 

Flight controls weight (lb) 89.1 91.0 108 93.0 93.0 152 111 231 

Operating weight (lb) 2380 2355 5280 2121 3697 7011 6708 5310 

𝑉𝑏𝑒 at DGW 6kISA (KTAS) 80.0 58.0 56.0 67.0 61.0 88.0 90.0 102 

𝑉𝑏𝑟 at DGW 6kISA (KTAS) 94.2 122 98 116 98 112 128 148 

𝑉𝑚𝑎𝑥 at DGW 6kISA (KTAS) 104 142 109 137 114 129 144 194 

Range (nm) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 

Energy burn (MJ) 2550 2670 1070 2210 686 1110 4260 3280 

Fuel burn (lb) 131 137 – 114 – – 220 169 

L/D𝑒 = W*Vbr/P 5.39 4.90 5.80 5.90 7.20 8.50 7.90 8.72 

Aircraft hover figure of merit 0.616 0.690 0.700 0.690 0.680 0.740 0.670 0.365 

Block time (min) 58.1 42.9 51.7 46.4 54.5 49.1 44.7 38.4 

Block speed (kt) 77.4 105.0 87.1 97.0 82.6 91.7 101 117 

Hover C-rate (1/hr) – – 1.1 – 1.4 2.4 0.0 0.0 

Cruise C-rate (1/hr) – – 0.8 – 0.7 0.7 0.0 0.0 
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8 Summary 

A new aircraft design, a tiltwing, has been added to the fleet of NASA UAM reference vehicles. The six-

passenger tiltwing vehicle uses a turboelectric propulsion system to power six proprotors positioned on a 

tilting main wing and two tilting proprotors positioned on the horizontal tail. This paper describes the tools 

employed and design process followed to achieve this first iteration of the tiltwing reference vehicle.  

The general design process is summarized as follows. First, high-level design decisions were made in order 

to target a vehicle concept that is representative of industry concepts and enables low-noise objectives to 

be pursued. This resulted in a vehicle with a tilting main wing with multiple proprotors positioned upstream 

of the leading edge and a T-tail configuration with two tilting proprotors positioned at the tips of the 

horizontal tail. Second, vehicle sizing and configuration trade studies were performed with NDARC. These 

studies established that the vehicle would have six proprotors positioned on the main wing and that all 

proprotors would be directly driven by their respective motors, i.e., without cross shafting. In addition, a 

new motor sizing model, based on maximum continous power instead of maximum rated power, was 

developed and employed. However, further studies beyond the scope of this paper are necessary to 

determine if the power capabilities of the motors currently employed on this vehicle are sufficient for safe 

contingency operations. These initial analyses resulted in an approximately sized vehicle design on which 

further analysis was conducted, external to NDARC, focusing on the aspects of the NDARC sizing process 

which used assumptions that had the greatest level of uncertainty.  

Structural analysis was performed in M4 Structures Studio to improve the empennage weight estimate, 

because the empennage design was not represented by existing empirical datasets. This analysis indicated 

that the majority of the empennage structure would be sized by the minimum thickness of the composite 

plies that make up the skin, rather than maximum stress or strain. The present limits on minimum skin 

thickness may be conservative. The authors will continue to research strain allowables and minimum skin 

thickness for UAM vehicles. One anticipated difficulty is that the allowables are tied to process factors and 

unless the fabrication methods are specified, a single value or set of values for allowable strain may not 

make sense. Operational use will eventually help to determine minimum skin thickness since, for example, 

the usage environment envisioned for UAM may include large numbers of interactions with people 

unfamiliar with aircraft and without engineered controls such as jetways or air stairs to preclude damage. 

An additional area of interest was to explore proprotor design for operation in both hover and cruise flight. 

The proprotor design presented here is intended to represent a first pass at designing a proprotor to meet 

the required lift/thrust performance of the tiltwing vehicle, while acoustics were kept in mind by designing 

a proprotor in hover that achieved a moderate blade loading despite a rather high overall disk loading. An 

optimum hovering rotor design process was implemented for 5- and 8-bladed proprotors. The NASA  

Aircraft Noise Prediction Program’s Propeller Analysis System was employed to assess proprotor 

aerodynamic performance and tonal noise. The NASA Broadband Acoustic Rotor Codes suite was 

employed to estimate proprotor broadband noise. Acoustic predictions were obtained for each proprotor in 

isolation and as an incoherant summation of eight proprotors for both hover and cruise flight. The 5-bladed 

proprotor produced a slightly lower overall sound pressure level (OASPL) than the 8-bladed proprotor in 

both phases of flight; however, a lower OASPL may not indicate the best proprotor choice from a 

psychoacoustic perspective, as some noise frequences may be preferred over others. The 5-bladed proprotor 

was selected for this initial tiltwing reference vehicle because both proprotor designs had similar OASPLs 

and because several proposed industry concepts have 5 blades. Future design iterations will target improved 

efficiency and acoustics.  

Finally, aerodynamic analyses implementing a vortex lattice method, RoBIN, were performed to improve 

the accuracy of representing airplane mode flight performance in NDARC by guiding inputs such as span 

efficiency and component interference factors. A parasite drag buildup was performed to guide parasite 

drag inputs to NDARC. 
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The resulting tiltwing vehicle attributes were compared against an updated lift-plus-cruise vehicle, with 

updated assumptions consistent with those of the tiltwing. Additionally, the tiltwing and updated lift-plus-

cruise vehicles were compared against all of the other NASA six-passenger UAM reference vehicles. The 

fleet of reference vehicles is publicly available for futher research and development by the UAM 

community [6]. 

9 Future Work 

Existing NASA UAM reference vehicles are already being studied by parties within and external to NASA. 

This tiltwing vehicle provides an opportunity to study an additional vehicle design as part of the NASA 

UAM reference vehicle fleet. The designs of the reference vehicles are by no means final; these vehicles 

will act as baselines upon which trade studies will be conducted, and future versions of these concepts will 

be based upon the results of the trade studies. 

Within the Revolutionary Vertical Lift Technologies (RVLT) Conceptual Design Team, planned future 

work involves vehicle-centric trade studies on the fleet of reference vehicles with an emphasis on noise and 

performance. Trade studies are intended to expose design degrees of freedom, inform tool development 

requirements, and enable measurement of the relative potential of different novel technologies so as to 

identify high-payoff technologies for UAM. Trade studies within the RVLT Conceptual Design Team will 

be prioritized based upon expected maximum impact towards enabling UAM; feedback is invited from the 

community on specific points of interest. These trade studies are planned to be performed in line with a 

series of workshops hosted by NASA, which are expected to be opened more widely to the community as 

they progress. The workshops are intended to help guide NASA’s work on UAM vehicle technologies and 

ensure that NASA’s UAM vehicle research and development remains relevant. 

9.1 NDARC  and AIDEN User Interface and Modeling Enhancements 

A number of challenges and limitations were encountered in the process of modeling the tiltwing in 

NDARC. The following list is intended to enable other users to understand the existing challenges and/or 

limitations involved, and to discuss possible near-term improvements to NDARC. 

NDARC assumes that span efficiency remains constant throughout the mission; whereas, in reality, span 

efficiency varies with varying blowing conditions. Span efficiency effects are not extremely important for 

the present tiltwing vehicle, because the proprotor interference on the wing in climb and cruise is relatively 

small. However, if NDARC will be used to model vehicles for which the proprotor blowing effects have a 

large influence on spanwise lift distribution (i.e., when interference velocity is a large proportion of the 

local velocity seen by the wing; for example, a tiltwing in transition or the X-57 with high lift propellers), 

then an improved method needs to be implemented.  

Three-dimensional wing aerodynamic coefficients, defined by the user, are presently required to be 

identical for each panel. Individual panel coefficients could accommodate the scenario when a user wishes 

to model more than one lift, drag, or moment coefficient (e.g., different airfoils) along the wing span. 

Similarly, NDARC alone is limited to specifying a single set of aerodynamic properties for all radial rotor 

blade stations; however, when NDARC is employed alongside a comprehensive analysis tool, rotor blade 

definition is defined in more detail in the comprehensive analysis, and that tool will specify aerodynamic 

properties for all radial sections. A surrogate model fits the NDARC model to the comprehensive analysis 

predictions for integrated rotor performance.  

NDARC does not have the ability to specify a pivot location for a tilting wing. This limitation precluded 

modeling hover, forward flight, and transition with a single NDARC aircraft, as multiple wing models are 

necessary to properly place the wing in each mode. 
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Rotor-rotor interference factors were not applicable to axial flight (propeller mode) interference, and so 

were not implemented for this NDARC model. Further studies are required to identify an appropriate 

implementation of these interference factors axial flight. 

NDARC currently employs an electric motor weight model derived from a selection of motors with either 

high peak torque-to-weight ratios or from a broader set of motors. NDARC also allows the user to build 

their own custom weight equations. A different motor design approach is being applied by some in the 

community which is better captured by considering continuous torque ratings rather than peak torque 

ratings; a model based on motors with high continuous torque-to-weight ratios is recommended for future 

NDARC developments.  

In an N2 task within AIDEN version 1.8.8, the geometry links from the NDARC job to the convergence 

driver were not capable of addressing the location of components due to a parsing bug, preventing the 

geometry file from being adjusted automatically within the N2 convergence loop. This bug is planned to be 

rectified in future AIDEN releases. 

The NDARC positions and orientations for moveable components are not presently reported in the output, 

leading to difficulties debugging the aircraft model and debugging NDARC itself. Several improvements 

to NDARC and utilities are possible, including (1) outputting component locations for all vehicle 

configurations separately; (2) clearly reporting coordinate system transformations; and (3) improved 

navigation of the various convergence loops through a graphical tool.   
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