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ABSTRACT: We present an efficient approach to develop a
series of multifunctional π-conjugated polymers (P1−P3) by
controlling the degree of fluorination (0F, 2F, and 4F) on the
side chain linked to the benzodithiophene unit of the π-
conjugated polymer. The most promising changes were
noticed in optical, electrochemical, and morphological proper-
ties upon varying the degree of fluorine atoms on the side
chain. The properly aligned energy levels with respect to the
perovskite and PCBM prompted us to use them in perovskite
solar cells (PSCs) as hole-transporting materials (HTMs) and
in bulk heterojunction organic solar cells (BHJ OSCs) as
photoactive donors. Interestingly, P2 (2F) and P3 (4F)
showed an enhanced power conversion efficiency (PCE) of 14.94%, 10.35% compared to P1 (0F) (9.80%) in dopant-free PSCs.
Similarly, P2 (2F) and P3 (4F) also showed improved PCE of 7.93% and 7.43%, respectively, compared to P1 (0F) (PCE of
4.35%) in BHJ OSCs. The high photvoltaic performance of the P2 and P3 based photovotaic devices over P1 are well correlated
with their energy level alignment, charge transporting, morphological and packing properties, and hole transfer yields. In
addition, the P1−P3 based dopant-free PSCs and BHJ OSCs showed an excellent ambient stability up to 30 days without a
significant drop in their initial performance.

KEYWORDS: multifunctional π-conjugated polymers, efficient dopant-free perovskite solar cells, efficient organic solar cells,
long-term stability, time-resolved microwave conductivity

■ INTRODUCTION

The exploration of renewable light-harvesting technologies
including perovskite solar cells (PSCs) and bulk heterojunction
organic solar cells (BHJ OSCs) has attracted significant
academic attention due to their fascinating features such as
solution processability, flexibility, and large area devices for the
next-generation solar cell technologies.1−9 The power con-
version efficiency (PCE) of PSCs has been dramatically
improved by over 22% by amending the electronic quality of
perovskite and by using state-of-the-art hole-transporting
materials (HTMs) such as tetrakis(N,N-di-p-methoxyphenyl-
amine)-9,9′-spirobifluorene (spiro-OMeTAD) owing to its

enhanced charge transport toward the electrode via properly
aligned energy levels with respect to the perovskite.10 Similarly,
BHJ OSCs have recently attained a high PCE over 12% by
careful engineering of the molecular structure of photoactive
donors and systematic device optimization.11 Therefore, the
roles of overlaying HTMs in PSCs and photoactive donors of
BHJ OSCs have become essential for optimizing or improving
the PCE and long-term stability. Despite being the benchmark
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HTM, the conventional HTM (spiro-OMeTAD) in its pristine
form has been suffering from poor mobility and conductivity
and, thus, typically requires p-type doping that could cause
serious stability issues in the device and restrict its practical
use.12,13 Therefore, replacing the spiro-OMeTAD with new
HTMs with the desired properties of appropriate energy levels,
high hole mobility in its pristine form, low cost, and easy
processable materials is necessary for attaining highly efficient
and stable PSCs, which are anticipated to be truly compatible
for practical application.
In this regard, π-conjugated polymers are potential

alternatives to small-molecule HTMs due to their attractive
features such as high hole mobility, hydrophobicity, quality film
patterns without pinholes, lower material consumption, and
passivation of the perovskite layer.14−18 Despite the consid-
erable advances in the development of alternative planar small-
molecule HTMs in place of conventional meso-structured
propeller-type materials (spiro-OMeTAD),19−21 not much
progress has been made in π-conjugated polymer-based based
HTMs for PSCs. In addition, most of the existing polymer-
based HTMs showed poor performances in their pristine form,
and also, most of them need p-type doping to attain high device
performance.22−25 Similarly, few thiophene-based polyelectro-
lytes have been reported with high performance, but their
hygroscopic nature will affect the device stability by a corroding
perovskite layer.25 Moreover, these external dopants can
complicate the device optimization process, compromise the
device stability, and increase the overall production cost.
Recently, few research groups have successfully demonstrated
the real potential behavior of polymer HTMs in achieving high
performance dopant-free PSCS with long-term stability, but
their role only limited as HTMs in PSCs, and their
compatibility in BHJ OSCs has not been explored.26,27

Recently, we successfully demonstrated the potential compat-

ibility of conjugated polymers for multiple applications with
great performance in both PSCs and BHJ OSCs.28 Therefore,
the development of new polymer HTMs with intrinsically rich
optoelectronic properties not only enhances the current PCE of
PSCs but also can be extended to BHJ OSCs as photoactive
donors.
Until now, the fluorine substitution on the donor−acceptor

(D−A) π-conjugated polymer backbone has been widely
investigated as a successful approach for simultaneously
enhancing photovoltaic properties in BHJ OSCs. Unfortu-
nately, the direct fluorination on the BDT unit showed
detrimental impact on electrical and morphological properties
and resulted in poor performance.29 In contrast to that, our
side-chain fluorination approach has many significant merits
compared to direct fluorination on the BDT unit.30 However,
no systematic investigations have been undertaken on the
degree of side-chain fluorination in π-conjugated polymer
HTMs and its impact on PSCs. Furthermore, regulating the
degree of side-chain fluorination in π-conjugated polymers will
assist in developing efficient photoactive donors for high
performance BHJ OSCs. Herein, we report a series of
multifunctional π-conjugated polymers (P1 (0F), P2 (2F),
and P3 (4F)) with different number of fluorine atoms in the
conjugated side chain linked to benzodithiophene to explore
the correlation between the degree of fluorine content in the π-
conjugated polymers and the photovoltaic properties of the
resulting dopant-free PSCs and BHJ OSCs. The key monomers
and polymers (Scheme S1) in the study were synthesized
according to our recent report.30 We presumed that P1−P3
with different degrees of fluorine substitution on the 2D-
conjugated side chain would improve the charge transport
behaviors via enhanced inter/intramolecular interactions
through strong π−π stacking, vary the lifetime of the charge-
separated excited state, and increase the hydrophobicity of

Figure 1. (a) Molecular structures of P1−P3. (b) Absorption coefficient spectra of P1−P3. (c) Energy level diagram of P1−P3.
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polymers, which will affect the performance and long-term
stability of dopant-free PSCs and BHJ OSCs. Upon placing the
new polymers (P1−P3) in dopant-free PSCs as HTMs, we
observed significant differences in their photovoltaic properties
with respect to the fluorine content in the π-conjugated
polymers. In particular, the fluorinated polymers P2 and P3
showed enhanced photovoltaic performance (maximum PCE of
14.94% and 10.35%) compared to the nonfluorinated polymer
P1 (maximum PCE of 9.80%) without any external dopants,
which are far superior than spiro-OMeTAD-based dopant-free
PSC performance (PCE = 8.74%). Similarly, P2 and P3 showed
excellent compatibility with PC71BM and delivered a maximum
PCE of 7.93% (P2) and 7.43% (P3) with high open-circuit
voltage (Voc) of 0.82 and 1.00 V, respectively, in BHJ OSCs,
which outperformed the P1-based device with the PCE of
4.35%. It is worth mentioning that the PCEs of 7.93% and
7.43% with high Voc of 0.81 and 1.00 V would definitely be
suitable candidates for tandem solar cell fabrication to boost
PCE in BHJ OSCs. Overall, the current approach of regulation
of side-chain fluorination of conjugated polymers enables us to
develop highly efficient multifunctional conjugated polymers
with high performance dopant-free PSCs and BHJ OSCs with
long-term ambient stability. To the best our knowledge, this is
one of the best reports where a set of multifunctional side-chain
fluorinated π-conjugated polymers show their compatibility as
HTMs in dopant-free PSCs and as photoactive donors in BHJ
OSCs with high performance and long-term stability.

■ RESULTS AND DISCUSSION
The molecular structures of P1−P3, absorption coefficient
spectra, and energy level diagram are presented in Figure 1.
The thermal properties were determined by probing
thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC), and their representative TGA and DSC
curves are shown in Figure S1 (Supporting Information (SI)).
P1−P3 showed high thermal decomposition temperatures
(Table S1, SI) over 400 °C without any characteristic phase
transition in the DSC profiles. Further, Figure S2 (SI) shows
the normalized UV−visible absorption spectra of P1−P3 in the

solution and film states. In addition, P2 and P3 showed more
pronounced vibronic shoulders than that of P1, which suggests
enhanced inter/intramolecular interactions in the fluorinated
polymers. Moreover, P2 and P3 showed gradual improvement
(Figure S3, SI) in their vibronic shoulder as the concentration
was increased. The incomplete disappearance (Figure S4, SI) of
the shoulders at high temperatures may be due to the presence
of strong interactions attributed to their enhanced planar
structures, which are well correlated with reduced steric
hindrance between the D and A units of P1−P3 (vide inf ra).
Also, we performed FTIR for P1−P3 to analyze the reason for
improved intermolecular interactions in FTIR. However, we
found identical FTIR spectra for all the three polymers (Figure
S5, SI). The electrochemical properties were estimated from
cyclic voltammetry (CV) (Figure S6, SI). The fluorinated
polymers P2 and P3 showed deeper highest occupied molecular
orbitals (HOMOs) (−5.43 and −5.50 eV) and higher lowest
unoccupied molecular orbitals (LUMOs) (−3.61 and −3.68
eV) compared to nonfluorinated polymer P1 (−5.41 and −3.59
eV), respectively, without altering their optical band gaps. This
clearly indicates that our approach of regulation of fluorine
content on the side chain significantly alters the energy levels
without altering the band gaps. Further, the experimental
HOMOs and LUMOs were well correlated with density
functional theory (DFT) results for the repeating units of P1−
P3, as shown in Figure S7 (SI). Next, we also measured
ultraviolet photoelectron spectroscopy (UPS) for P1−P3
polymers to estimate the accurate energy levels. The obtained
UPS results (Figure S8, SI) are very well correlated with the CV
and DFT results. Interestingly, the reduced dihedral angle (θ3)
between D and A units (Figure S9 and Table S2, SI) of P2 and
P3 may have afforded a better planar structure than that of
nonfluorinated P1, which was clearly correlated with the
presence of vibronic shoulders at elevated temperatures.
Furthermore, higher dipole moments were observed for P2
and P3 (4.44 and 2.75 D), which thus could show a more
closely packed structure with greater molecular ordering31

compared to that of P1 with low dipole moment (1.44 D).

Figure 2. (a) Device structure of PSCs. (b) J−V curves of P1−P3-based PSCs. (c) EQE curves of P1−P3-based PSCs. (d) Stability of P1−P3-based
PSCs.
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The impact of degree of side-chain fluorination on the
photovoltaic properties of PSCs was analyzed by fabricating
dopant-free PSCs in a planar device structure (FTO/blocking
TiO2/mesoporous TiO2/perovskite/HTM/Ag), and P1−P3
were used as HTMs (Figure 2a). P1−P3 showed very good
compatibility in dopant-free PSCs and delivered maximum
PCEs of 9.80, 14.94, and 10.35%, respectively. Moreover, all
three polymers showed higher performance than dopant-free
spiro-OMeTAD-based devices (PCE = 8.74%). It is worth to
remind that the obtained PCE of 14.94% is one of the best
performances reported in dopant-free polymer HTM-based
PSCs (Table S3, SI). The optimized photovoltaic properties of
the P1−P3-based PSCs are extracted in Table 1, and the

respective current density−voltage (J−V) and external
quantum efficiency (EQE) curves are shown in Figure 2b,c.
P2- and P3-based devices showed enhanced PCE compared to
P1-based devices, which demonstrates the importance of the
degree of fluorine content in the side chain for regulating the
photovoltaic properties. To provide an insight into the hole
transfer process, flash photolysis time-resolved microwave
conductivity (TRMC) evaluations32 were performed for the
quartz/mesoporous-TiO2/perovskite with/without P1−P3
(Figure S10 and Table S4, SI). The highest hole transfer
yield (ηsat) of 0.88 in the saturated region (ca. 3 μs) was found
for P1, followed by P2 (0.80) and P3 (0.54). The delayed hole

transfer rates (k) are P1: 8.5 × 106/s, P2: 2.6 × 106/s, and P3:
7.9 × 105/s, respectively. Notably, both ηsat and k are increased
with the increase of the HOMO levels, indicating that the hole
transfer process is mostly governed by the energetic offset. The
highest PCE observed for P2 is a result of the most balanced
efficiencies of hole transfer at the perovskite/HTM interface
and hole transport in HTM associated with a hole mobility.
The enhanced short-circuit current density (Jsc) of the P2- and
P3-based devices could be due to the high space-charge-limited
current (SCLC) hole mobility (μh) of P2 (9.32 × 10−5 cm2 V−1

s−1) and P3 (4.06 × 10−5 cm2 V−1 s−1) compared to that of P1
(2.51 × 10−5 cm2 V−1 s−1) (Figure S11a, SI). To further
describe the improved fill factor (FF) of the P2-based PSCs, the
J−V characteristics of the PSCs were measured in the dark
under ambient conditions at ±1.5 V (Figure S11b, SI). The
rectification ratios of P1−P3-based PSCs were 8.94 × 102, 6.20
× 103, and 2.01 × 103, respectively. Thus, the P2-based PSCs
exhibited a sufficiently increased shunt resistance (Rsh) and
decreased series resistance (Rs), indicating a reduction in the
leakage current and more charge extraction/transport effi-
ciency.19,33 Further, the HTMs with enhanced π−π stacking
may be beneficial for providing a much smoother and higher
quality film to improve the Jsc, FF, and device performance
while also prolonging the device lifetime.34 The atomic force
microscopy (AFM) images of pristine polymers (P1−P3) and
perovskite:HTM (P1−P3) blends displayed in Figure S12 (SI)
and the root-mean-square (RMS) roughness values of pristine
polymers (P1 = 2.46 nm, P2 = 1.62 nm, and P3 = 1.81 nm) and
composite films of perovskite: P1 = 12.43 nm, perovskite: P2 =
5.40 nm, and perovskite: P3 = 6.21 nm are well supporting the
aforementioned claims. Further, steady-state photolumines-
cence (PL) (Figure S13, SI) of perovskite, perovskite: P1,
perovskite: P2, and perovskite: P3 confirmed that the charge
separation at perovskite/dopant-free HTMs is very well
correlated with the photovoltaic properties of P1−P3-based
PSCs.16 Electrochemical impedance spectroscopy (EIS) meas-
urements were performed on the P1−P3-based PSCs to
characterize their hole/charge transport behavior (Figure S14,
SI). The previously reported equivalent circuit model was used
to fit the obtained EIS curves.19 Therefore, a recombination

Table 1. Photovoltaic Properties of P1−P3-Based Dopant-
Free PSCs

HTM scan
Jsc

(mA/cm2)
VOC
(V)

FF
(%)

PCEmax
(%)

calcd Jsc
(mA/cm2)a

P1 reverse 17.85 1.00 54.66 9.80 18.62
P1 forward 17.11 0.97 54.32 9.08 18.62
P2 reverse 20.17 1.04 70.65 14.94 20.23
P2 forward 19.69 1.04 68.17 14.06 20.23
P3 reverse 18.58 1.03 53.81 10.35 19.48
P3 forward 19.56 1.01 50.80 10.12 19.48
refb reverse 19.58 1.01 43.91 8.74 18.47

aCalculated Jsc from EQE. bSpiro-oMeTAD-based PSCs in dopant-
free conditions.

Figure 3. (a) SEM cross-section image of P2-based PSCs. (b) Water contact angles of P1−P3. (c) Histograms of the PCE values of the P1−P3-
based PSCs.
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loss process was confirmed at low frequency, while the high
frequency was related to the diffusion of holes via HTMs. The
recombination rate is inversely proportional to the recombina-
tion resistance (Rrec, extracted from EIS curve), which itself
follows an exponential decrease with increasing applied
voltage.35 The Rrec decreased in the order of P2 > P3 > P1 at
low and high voltages, which gave a longer charge carrier
lifetime for better transport for P2 and P3 HTM-based PSCs,
thereby improving the performance of the PSCs.
Furthermore, the hole conductivity (σHTM) increased with

increasing voltage, due to the higher gradient of hole density in
HTM caused by the hole injection from the perovskite
layer.35As a result, the conductivity findings of P1−P3 agreed
well with the dopant-free PSC device performances. Further,
the durability of the new HTM-based dopant-free PSCs was
analyzed under ambient condition (Figure 2d). All three
dopant-free PSCs retained more than 75% of their initial
efficiency after exposure to air for over 30 days (720 h) due to
the enhanced hydrophobic nature of the polymers and to the
high quality pinhole-free films (Figure 3a). Thus, P1−P3 are
showing far better stability in PSCs than spiro-OMeTAD-based
dopant-free PSC devices. In particular, P2 and P3 showed high
sustainability of PCE over 30 days due to their higher
hydrophobicity (water contact angle of 104.2° and 106.2°)
which effectively reduced the water penetration compared to
that of P1 (101.7°) (Figure 3b). The histograms of the P1−P3-
based dopant-free PSCs shown in Figure 3c clearly show the
reproducibility of dopant-free PSCs with minimal hysteresis.
Next, the P1−P3-based BHJ OSCs were fabricated in

inverted (ITO/ZnO/P1−P3:PC71BM/PEDOT:PSS/Ag) con-
figuration to understand the same effect (Figure 4a). The
optimized device fabrication procedure is shown in the
Supporting Information. The J−V and EQE curves of the
optimized devices are shown in Figure 4b,c, and the
photovoltaic parameters are summarized in Table 2. Especially,
the fluorinated polymer (P2 and P3)-based BHJ OSCs showed
enhanced PCEs of 7.93% and 7.43% compared to P1-based
devices (4.35%). This enhanced PCE of the P2- and P3-based

devices strongly correlated with their synergistic improvement
in Jsc and FF values compared to that of P1-based devices. The
high open-circuit voltage (Voc) of P2- and P3-based devices
over P1 can be understood from the deep HOMOs of P2 and
P3. More importantly, the enhanced Jsc and FF for P2 (Jsc =
15.10 mA/cm2, FF = 64.23%) and P3 (Jsc = 13.25 mA/cm2, FF
= 55.57%) based BHJ OSCs compared to that for P1 (Jsc = 9.96
mA/cm2, FF = 53.79%) is the major reason for the enhanced
PCE for the fluorinated polymers. The improved Jsc values for
the P2- and P3-based devices could be due to their higher
absorption coefficients (5.5 × 104 and 4.8 × 104 M−1 cm−1)
than for P1 (3.8 × 104 M−1 cm−1). Further, these enhanced Jsc
values for the P2- and P3-based BHJ OSCs are very consistent
with their strong EQE responses of up to ∼77% and 70%,
respectively, compared to the lower spectral response of the P1-
based devices (59%), as shown in Figure 4c. The Jsc values were
well matched with the Jsc values calculated from the EQE
spectra. In addition, the P2- and P3-based BHJ OSCs showed
improved FF compared to P1-based BHJ OSCs, which was
attributed to the reduced series resistance. Further, the
improved Jsc and FF for the P2- and P3-based BHJ OSCs are
well aligned with their improved SCLC charge transport
properties compared to those of the P1-based BHJ OSCs. As
shown in Figure S15 and Table S5 (SI), P2:PC71BM and
P3:PC71BM blends showed higher μh (1.81 × 10−3 and 1.37 ×
10−3 cm2 V−1 s−1) and electron mobility values (μe = 9.23 ×
10−4 and 5.63 × 10−4 cm2 V−1 s−1) than P1:PC71BM blends (μh

Figure 4. (a) Device structure of BHJ IOSCs. (b) J−V curves of P1−P3:PC71BM-based BHJ OSCs. (c) EQE curves of P1−P3:PC71BM-based BHJ
OSCs. (d) Stability of P1−P3:PC71BM-based BHJ OSCs.

Table 2. Photovoltaic Properties of P1−P3-Based BHJ OSCs

blend
Jsc

(mA/cm2)
VOC
(V)

FF
(%)

PCEmax
(%)

calcd Jsc
(mA/cm2)a

P1:
PC71BM

9.96 0.81 53.79 4.35 9.86

P2:
PC71BM

15.10 0.82 64.23 7.93 15.23

P3:
PC71BM

13.25 1.00 55.57 7.43 13.25

aCalculated Jsc from EQE.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.7b09146
ACS Appl. Mater. Interfaces 2017, 9, 36053−36060

36057

http://pubs.acs.org/doi/suppl/10.1021/acsami.7b09146/suppl_file/am7b09146_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.7b09146/suppl_file/am7b09146_si_001.pdf
http://dx.doi.org/10.1021/acsami.7b09146


= 8.40 × 10−4; μe = 2.35 × 10−4 cm2 V−1 s−1). The ambient
stability of photoactive materials is an essential factor for the
practical use of BHJ OSCs. Hence, we also studied the ambient
stability (Figure 4d) for the BHJ OSCs and found that they
showed high ambient stability over 30 days (720 h) with
maximum retention of their initial photovoltaic properties. The
improved stability was attributed to the inverted device
structure and stable morphological properties of the blends.36

The active layer morphology of the P1−P3-based optimized
devices was analyzed by atomic force microscopy (AFM), as
shown in Figure 5a. The fluorinated polymer blends showed
enhanced miscibility with PC71BM and displayed relatively
smooth surface morphology with a RMS of 0.46 (P2) and 1.21
nm (P3). In comparison, the nonfluorinated P1 and PC71BM
blends had the phase-separated morphology with larger domain
spacing and RMS roughness of 2.26 nm. Next, we examined the
effect of the fluorination on the polymer packing structure and
its orientation in thin films, which significantly affect the charge
transport in the thin film. The polymer blends were
investigated by two-dimensional grazing incidence X-ray
scattering (2D-GIWAXS) measurements (Figure 5b,c). All
three blend films showed a similar (100) peak of the polymer
donors at qxy = 0.22 Å−1 (2.86 nm) and a broad peak from
PC71BM at qxy = 1.33 Å−1 (0.47 nm) in the in-plane direction.
Also, all three polymer films had the π−π stacking (010) peak
of the polymers at qxy = 1.68 Å−1 (0.37 nm) in the out-of-plane
direction, showing the preferential face-on orientation.37−39

However, it was evident that the fluorinated polymers P2 and
P3 had much stronger π−π stacking peak as shown in Figure
5b,c. This feature suggested that the fluorination of the
polymers successfully promoted the formation of the well-
organized intermolecular assembly, which is well correlated
with their improved charge transport characteristics in the case
of dopant-free PSCs. The P2 and P3 blends had well-

developed, face-on oriented assembly of polymers and suitable
BHJ morphology with large interfacial area, which produced
efficient exciton dissociation and vertical charge transport
between the electrodes, which collectively led to the enhanced
PCE values for the P2- and P3-based devices.

■ CONCLUSIONS
In summary, we successfully demonstrated a series of
multifunctional π-conjugated polymers by regulating the degree
of side-chain fluorination. The multifunctional π-conjugated
polymers (P1−P3) showed an excellent compatibility as HTM
in dopant-free PSCs and as photoactive donors in BHJ OSCs.
Especially, the fluorinated polymer (P2 and P3) based devices
exhibited much higher PCE values of 14.94% and 10.35% than
P1-based devices (PCE value of 9.80%) in dopant-free PSCs.
Particularly, the high PCE values of the P2- and P3-based
devices were attributed to the enhanced charge transport via
improved face-on π−π stacking, packing, and quality film
formation of the polymers and better aligned energy levels with
respect to the perovskite. Further, a similar trend was observed
in BHJ OSCs, highlighting the importance of the present
approach for developing multifunctional π-conjugated polymers
by the regulating the side-chain fluorination. Especially, P2 and
P3 based BHJ OSCs showed improved PCE of 7.93% and
7.43% compared to P1 (PCE = 4.35%). The obtained results
were highly correlated with their maximized absorption
coefficients, balanced charge transport properties, and reduced
recombination losses, which were collectively accomplished via
improved inter/intramolecular interactions, well-developed
BHJ morphology, and face-on oriented polymer packing
structures. In addition to their enhanced performance, the
P1−P3-based dopant-free PSCs and BHJ OSCs also demon-
strated an excellent long-term ambient stability over 30 days
(720 h), which further confirmed the potential behavior of new

Figure 5. (a) AFM images of the optimized P1−P3: PC71BM blends. (b) 2D-GIWAXS patterns of the P1−P3: PC71BM BHJ blends. (c) In-plane
linecut (qxy) and out-of-plane linecut (qz) of 2D-GIWAXS images.
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multifunctional π-conjugated polymers toward stable and
scalable photovoltaic devices.
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