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University



How to Make a Car Drive Itself?
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Conventional Approach
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Steering, Acceleration, Brake

● Design feature extractors and controllers with stochastic/deterministic 
models.
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Behavior Cloning Approach
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Steering, Acceleration, Brake

● Design feature extractors and controllers with stochastic/deterministic 
models.
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Why Behavior Cloning?
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● In ideal conditions, conventional feature 
extraction and model based approaches 
work well.

● Yet, in practice, it is difficult to get proper 
actuation parameters for a model in bad 
road conditions and/or adversarial 
weather conditions.



Behavior Cloning
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Behavior Cloning

● Try to mimic an expert behavior on a task.

● Sensory input: x → Action output: y
● Collect an expert behavior in a tuple format: (input: x, action y).

○ input → [expert] → output

● If we can find a nonlinear function to map the input x into the output y,
● We can infer a proper output without modeling a complex internal state. 
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ALVINN

https://youtu.be/IaoIqVMd6tc
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In 1989 by Dean A. PomerleauSteer like I do

http://www.youtube.com/watch?v=IaoIqVMd6tc&t=17


DAVE: 

● DARPA Autonomous Vehicle 
Experiment (DAVE)

● A Convolutional Neural Network 
(CNN: Proposed by LeCun in 1998) 
was used. 

○ Six layers
■ 3,148,776 connections
■ 71,886 independent parameters

● Training data: 225K samples from 
3,200 runs
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In 2003



NVIDIA - PilotNet (originally DaveNet)

● Neural Network Architecture: 
○ PilotNet:

■ CNN
■ 27 million connections

● Hardware: NVIDIA PX2
○ 12 CPU cores, Pascal GPUs
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In 2016



NVIDIA - PilotNet (originally DaveNet)
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In 2016

http://www.youtube.com/watch?v=qhUvQiKec2U


Behavior Cloning
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Behavior Cloning
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Inference

Incoming Camera Input Data
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● Learn a policy to map an input image to control signals (steering, throttle, 
brake)



But, Wait… 
Does a Human Learn How to Drive in 

This Way?
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Problems in Behavior Cloning
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Behavior Cloning

● Try to mimic an expert behavior on a task.

● Sensory input: x → Action output: y
● Collect an expert behavior in a tuple format: (input: x, action y).

○ input → [expert] → output

● If we can find a nonlinear function to map the input x into the output y,
● We can infer a proper output without modeling a complex internal state. 
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Behavior Cloning

● Try to mimic an expert behavior on a task. 
← Mapping without knowing the reason of the behavior.

● Sensory input: x → Action output: y
● Collect an expert behavior in a tuple format: (input: x, action y).

○ input → [expert] → output
← (1) Lack of Important but not frequent (e.g., restore from errors) data.
← (2) Test in an environment with different probabilistic distribution from the 
training data (distribution shift)

● If we can find a nonlinear function to map the input x into the output y,
● We can infer a proper output without modeling a complex internal state. 
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Human Learning for Driving
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Incoming Camera Input Data
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Network Output

Trained Neural Network

● Humans do not learn the mapping: sensory input ⇒ motor output.



Human Learning for Driving
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Learn by Active Motor Babbling

● Causally associating sensory feedback with motor actuation.

st at st+1



How to Learn Driving Like Humans Do?
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Conventional Methods

● Model Predictive Control (MPC)
○ See control problems as optimization.
○ Select an action that has the minimum cost from a horizon of action 

sequences in a dynamic physics environment. 
○ Challenging to define an exact model and cost functions.

● Reinforcement Learning
○ Model-free: through trial-and-error-based search an action sequences 

that are expected the maximum reward.
○ Model-based: through mathematical models, search and action 

sequences that are expected the maximum reward.
○ Challenging to define reward functions in complex real-world 

environment.
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Active Inference

● Integrated model of perception and control based on the brain’s 
perception model.

● Active Inference based on Free Energy Principle
○ (1) Deep neural generative models
○ (2) Motor imagery

● Find optimal control signals to minimize Free Energy. 
● Advantages:

○ No need to define system models
○ No need to define cost or reward functions
○ Strong to distribution shift issues because it is not simple mapping from input to output.
○ Possible to explain the reason of an action because it is not trial and error-based but a 

cause-and-effect-based method.
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Active Inference
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Free Energy Principle
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Free Energy Principle
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● Proposed by Karl Friston.
● Originally from thermodynamics in a closed system with constant 

temperature and volume.
○ Helmholtz free energy: F = U - TS (U: internal energy, T: temperature, S: entropy)
○ Gibbs free energy: G = U - TS + PV (P: pressure, V: volume)

● Friston’s free energy principle:
○ An information theory quantity that bounds the evidence for a model (encoded by the 

brain) of data (sensory input).
○ Free energy is greater than the negative log-evidence or ‘surprise’ in sensory data.
○ Under simplifying assumptions, it is just the amount of prediction error.

● “Systems change to decrease their free energy.”



Variational Free Energy

● VFE is an information-theoretic quantity that is minimized during 
variational inference.

● Variational (or Bayesian) Inference
○ Approximation of complex problems into a simpler one.
○ Make an inference problem to an optimization problem by adding variational parameters.

● The brain posses hierarchical generative models capable of generating 
expected sensory data, which learn by minimizing the prediction error 
between the predicted and observed sensory data.

● Active Inference extends this idea by applying it to action.
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Active Inference
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Perception System

● Perception Model: to infer probability distributions about a cause of 
sensory information from outside.

● Generative Model: prior probability distribution established via 
perception model

Perception 
model

Generative 
model

+ Perception

brain

sensor

top-down

bottom-up
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 Probabilistic Inference Engine



How to perceive the world (1/2)

● Information about the world → [sensory apparatus] → compressed and 
abstracted.
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How to perceive the world (2/2)

● How to infer the meaning of the stream of compressed electrical signals 
○ (1) Make changes on the world by actions. 
○ (2) Sensory organs receive the changes caused by the action.
○ (3) Find the pattern of sensory information and action that causes the change.
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Perception and Action in Active Inference

Perception
(sensory observation)

Action
(actuator output)

31



Perception and Action in Free Energy Principle

F = the negative variational free energy
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Perception and Action in Free Energy Principle

● To reduce prediction errors of 
generative models, either

○ (1) Improve perception model
○ (2) Find an action policy (or action 

sequences) to minimize prediction 
errors.
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How to find action policies
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Motor Imagery - Simulation Theory

● The same area is activated when
○ When you move your muscle and
○ When you imagine (or simulate) the motion.

● The brain can simulate the sensory 
information changes caused by an 
action without actually doing the action.
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Forward Model - Mental Imagery

● Internal sensorimotor models that predict how the sensory situation 
changes as a result of an agent actions.
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Forward Model



Forward Model In Vehicle
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Forward Model



Inverse Model - Mental Transformation

Given the current state and next state, estimate the action that could cause 
the next state. Optimization problem.
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Inverse Model



Inverse Model In Vehicle

Given the current state and next state, estimate the action that could cause 
the next state. Optimization problem.
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Inverse Model



Training Forward Model
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Forward Model with Variational Autoencoder
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Forward Model with Variational Autoencoder
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Experimental Environments
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http://www.youtube.com/watch?v=XGLyTrrwZQE


Forward Model using VAE
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http://www.youtube.com/watch?v=qNI4nIfphCc


Driving with Images Generated by VAE 
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http://www.youtube.com/watch?v=3aaad-ow2QE


Training Inverse Model

46

Action
 Discrepancy

Next Action

Estimated 
Next Action

-

+
Inverse Model



Training Inverse Model - Problem
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Training dataset: challenging to collect all state transition caused by an action.



Mental Simulation Theory
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Mental Simulation Theory
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Mental Simulation Theory
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● Simulation theory can be implemented through the Inverse Model.
● Motor actions can be inferred from the current sensory information and 

the future sensory situation caused by the the motor actions.



Action Policy through Mental Imagery

● First, define a task. (e.g., lane keeping)
● Second, define a preferred state (desired state or preference).
● Internally simulate possible action policies without actual overt action.
● Calculate the Expected Free Energy (EFE) from the policies.
● Choose an action policy that has a minimum EFE!

51



Applications
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Lane Keeping using Active Inference 

● To achieve a desired 
state (preference) from 
an actuation, possible 
actuations can be 
internally simulated.

● Find an actuation that 
has the least expected 
free energy.

● Apply the actuation to 
the actual system.
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Forward Model

Sensory Input

Imagined Action Pool

Inferred Sensory Feedback Pool

Find an action policy that has a 
minimum expected free energy

Apply Action

Desired State
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Demo in Carla Simulator
Birds Eye View



Demo
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View from Rear

http://www.youtube.com/watch?v=EHCous9j3r4&t=25


Another Demo in Carla
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Camera input in RGB

SSIM 

0.7634
0.7636

0.7250

Semantic 
segmented and 

extract road area

Actions … …

Semantic Segmented Desired State

Desired State in 
RGB

VAE-like 
Encoder-Decoder

…

…



Another Demo in Carla
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http://www.youtube.com/watch?v=XtecDEplo9c


Lane Change 

58



Lane Change Demo
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http://www.youtube.com/watch?v=EiQQ_vKPKgY


Summary
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Contributions:

● Learn driving through action selection through mental transformation.
● Use DNN-based Internal Forward and Inverse Model

○ Robustness and adaptability.

● Utilize perceptual-motor active inference framework to plan goal-directed 
behavior

○ This makes the decision making process more transparent because we can explain why a 
certain steering angle was applied to a certain condition.

○ Free from distribution shift problems.
■ Not learning the mapping sensory states to control signals.
■ Learning causal association between actions and sensory situations induced by  the 

actions.



Questions and Discussion
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End of Presentation
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