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How to Make a Car Drive Itself?



Conventional Approach M
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Steering, Acceleration, Brake

e Design feature extractors and controllers with stochastic/deterministic

models.
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Behavior Cloning Approach
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DEARBORN

e Design feature extractors and controllers with stochastic/deterministic

models.
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Why Behavior Cloning? M
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e Inideal conditions, conventional feature
extraction and model based approaches
work well.

e Yet, in practice, it is difficult to get proper
actuation parameters for a model in bad
road conditions and/or adversarial
weather conditions.
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Behavior Cloning
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Behavior Cloning M
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e Tryto mimic an expert behavior on a task.

e Sensoryinput: x — Action output:y

e Collect an expert behavior in a tuple format: (input: x, action y).
o input — [expert] — output

e If we can find a nonlinear function to map the input x into the outputy,
e We caninfer a proper output without modeling a complex internal state.
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ALVINN

In 1989 by Dean A. Pomerled DEARBORN

ALVINN (Autonomous Land Vehicle
In a Neural Network)
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Fig. 1. The Carnegie Mcllon NAVLAB autonomous navigarion testbed

Shumeet Baluja was bom in New Delhi. India, on
February 17, 1971, He received the B.S. degree in
computer science from the University of Virgini,
Charloticsville, in 1992. He is currenly pursuing
the Ph.D. degree in computer science at egie
Meclloa University, Pittsburgh, PA

His research interesss include anificial nevral
networks and thcir applications. mechanisms far
selective attention in vision, lesming in visual do-
mains, and evolulionary lgorithms.
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Fig. 2. The ALVINN necural network architecture.



http://www.youtube.com/watch?v=IaoIqVMd6tc&t=17

DAVE:

In 2003

e DARPA Autonomous Vehicle
Experiment (DAVE)

e A Convolutional Neural Network
(CNN: Proposed by LeCun in 1998)

was used.

o Six layers
m 3,148,776 connections
m 71,886 independent parameters

e Training data: 225K samples from
3,200 runs
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NVIDIA - PilotNet (originally DaveNet)

|n 201 6 DEARBORN

@) Output: vehicle control
. |
e Neural Network Architecture: — v Fuycomocod aye
[ S0neurons ] ully-conne yer
) PilotNet: [ 100 neurons ] Fully-connected layer
m 27 million connections T iy
684@1x18
3x3 kernel "
e Hardware: NVIDIA PX2 g
64@3x20

o 12 CPU cores, Pascal GPUs /xSkemel

NVIDIA DRIVE PX Specification Comparison

Convolutional
feature map
48@5x%22

' 5x5 kemel ;
DRIVE PX DRIVE PX 2 Convolutional
. feature map
36@14x47

SoCs 2x Tegra X1 2x Tegra "Parker”
5x5 kernel :
Discrete GPUs N/A 2x Unknown Pascal Convolutional
feature map
CPU Cores 8x ARM Cortex-A57 + 4x NVIDIA Denver + 24@31x98
8x ARM Cortex-53 8x ARM Cortex-A57 5 |
x5 kemnel ;
GPU Cores 2x Tegra X1 (Maxwell) 2x Tegra "Parker" (Pascal) + / !;J‘on:\allz:d
2x Unknown Pascal H NV fnonee
3@66x200
FP32 TFLOPS > 1TFLOPS 8TFLOPS T Nommalization |
FP16 TFLOPS > 2 TFLOPS 16 TFLOPS? '
Input planes
TDP NIA 250W H 3@66x200




NVIDIA - PilotNet (originally DaveNet)
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http://www.youtube.com/watch?v=qhUvQiKec2U

Behavior Cloning M
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Behavior Cloning M
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Inference

e Learn a policy to map an input image to control signals (steering, throttle,

brake)
Incoming Camera Input Data Network Output
Brake
Throttle
Steering
Trained Neural Network
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But, Wait...
Does a Human Learn How to Drive in
This Way?
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Problems in Behavior Cloning
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Behavior Cloning M
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e Tryto mimic an expert behavior on a task.

e Sensoryinput: x — Action output:y

e Collect an expert behavior in a tuple format: (input: x, action y).
o input — [expert] — output

e If we can find a nonlinear function to map the input x into the outputy,
e We caninfer a proper output without modeling a complex internal state.
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Behavior Cloning M
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e Tryto mimic an expert behavior on a task.
— Mapping without knowing the reason of the behavior.
e Sensoryinput: x — Action output:y

e Collect an expert behavior in a tuple format: (input: x, action y).
o input — [expert] — output
— (1) Lack of Important but not frequent (e.g., restore from errors) data.
«— (2) Test in an environment with different probabilistic distribution from the
training data (distribution shift)

e |f we can find a nonlinear function to map the input x into the outputy,
e We caninfer a proper output without modeling a complex internal state.
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Human Learning for Driving

e Humans do not learn the mapping: sensory input = motor output.

Incoming Camera Input Da
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Trained Neural Network

Network Output
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Human Learning for Driving M

DEARBORN

Learn by Active Motor Babbling

e Causally associating sensory feedback with motor actuation.
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How to Learn Driving Like Humans Do?
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reward r

Conventional Methods

observation o

™

Agent Environment

e Model Predictive Control (MPQC) \/
o See control problems as optimization. :
o Select an action that has the minimum cost from a horizon of action action u

sequences in a dynamic physics environment.
o Challenging to define an exact model and cost functions.

e Reinforcement Learning
o Model-free: through trial-and-error-based search an action sequences
that are expected the maximum reward.
o Model-based: through mathematical models, search and action
sequences that are expected the maximum reward.
o Challenging to define reward functions in complex real-world
environment.
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Active Inference M
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e Integrated model of perception and control based on the brain’s

perception model.

e Active Inference based on Free Energy Principle
o (1) Deep neural generative models
o (2) Motor imagery
e Find optimal control signals to minimize Free Energy.

e Advantages:
o No need to define system models
o No need to define cost or reward functions
o Strong to distribution shift issues because it is not simple mapping from input to output.
o Possible to explain the reason of an action because it is not trial and error-based but a

cause-and-effect-based method.
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Active Inference
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Free Energy Principle
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Free Energy Principle M
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e Proposed by Karl Friston.
e Originally from thermodynamics in a closed system with constant

temperature and volume.
o Helmholtz free energy: F=U-TS (U: internal energy, T: temperature, S: entropy)
o Gibbs free energy: G=U-TS + PV (P: pressure, V: volume)
e Friston’s free energy principle:
o Aninformation theory quantity that bounds the evidence for a model (encoded by the
brain) of data (sensory input).
o Free energy is greater than the negative log-evidence or ‘surprise’ in sensory data.
o Under simplifying assumptions, it is just the amount of prediction error.

e “Systems change to decrease their free energy.”
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Variational Free Energy M
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e VFE is an information-theoretic quantity that is minimized during
variational inference.

e Variational (or Bayesian) Inference
o Approximation of complex problems into a simpler one.
o Make an inference problem to an optimization problem by adding variational parameters.

e The brain posses hierarchical generative models capable of generating
expected sensory data, which learn by minimizing the prediction error
between the predicted and observed sensory data.

e Active Inference extends this idea by applying it to action.
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Active Inference
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Perception System M
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Probabilistic Inference Engine

e Perception Model: to infer probability distributions about a cause of
sensory information from outside.

e Generative Model: prior probability distribution established via
perception model

Generative

top-down brain nodel

ﬁ Perception

bottom-up Sensor Perception
model
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How to perceive the world (1/2) M
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e Information about the world — [sensory apparatus] — compressed and
abstracted.

LiGENCE 29



How to perceive the world (2/2) M
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e How to infer the meaning of the stream of compressed electrical signals
o (1) Make changes on the world by actions.
o (2)Sensory organs receive the changes caused by the action.
o (3) Find the pattern of sensory information and action that causes the change.

30



Perception and Action in Active Inference M
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Perception and Action in Free Energy Principle M
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F = the negative variational free energy Evidence Divergence
F = log P(0,) — KL[Q(s)) | P(s,| 0,)]

Free energy

0, Q(Sl)
Action Perception
- F(z,p)+ Y G(x, ) s;) = argmax F
0 = o Y, Fiz.p)+ Y, G, 0(s) = argma
p<t ™>1
Changing sensations Changing beliefs to
through action to minimize divergence
Birii: BiG-iFSF maximize evidence 32



Perception and Action in Free Energy Principle

e To reduce prediction errors of

generative models, either
o (1) Improve perception model
o (2) Find an action policy (or action
sequences) to minimize prediction
errors.
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Evidence Divergence
F =log P(o,) — KL[QO(s,) | P(s,| 0))]

Free energy

0, Q(sr)

Action Perception

0 = o Y, Fmp)+ Y, Gx.0)

p<t >1

0(s,) = argmax F
0

Changing sensations
through action to
maximize evidence

Changing beliefs to
minimize divergence
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How to find action policies
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Motor Imagery - Simulation Theory M
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e The same area is activated when
o  When you move your muscle and
o  When you imagine (or simulate) the motion.

e The brain can simulate the sensory
information changes caused by an
action without actually doing the action.

' P->A3
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Forward Model - Mental Imagery M
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e Internal sensorimotor models that predict how the sensory situation
changes as a result of an agent actions.

M,
Forward Model #S*t w5
St
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Forward Model In Vehicle M
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Forward Model —St 15 -
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Inverse Model - Mental Transformation M
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Given the current state and next state, estimate the action that could cause
the next state. Optimization problem.

St1s
Inverse Model — M

St
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Inverse Model In Vehicle M
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Given the current state and next state, estimate the action that could cause
the next state. Optimization problem.

i
St——

Inverse Model — A:]t @
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Training Forward Model

Y~

Internal Forward Model
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Estimated g .
Forward Forward Sensory Feedback t+0
S t - Motor Dynamic =% Sensory Output
...... o Model Model
+
: ~. Sensory
Efferent - Discrepancy
Copy
Motor New Sensory
‘A[ t - System State System Sensory Feedback S .
t+0
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Forward Model with Variational Autoencoder M
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M /
X encoder z L z decoder X'
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Forward Model with Variational Autoencoder M
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Experimental Environments
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http://www.youtube.com/watch?v=XGLyTrrwZQE

Forward Model using VAE
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http://www.youtube.com/watch?v=qNI4nIfphCc

Driving with Images Generated by VAE
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http://www.youtube.com/watch?v=3aaad-ow2QE

Training Inverse Model M
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S t > ~ Estimated

A{ t Next Action

Inverse Model ;
S . +
t-+0 >
\ Action
Discrepancy
A [lL Next Action
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Training Inverse Model - Problem M
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Training dataset: challenginito collect all state transition caused by an action.

S t > ~ Estimated

A{ t Next Action

&) Inverse Model "
S . +
t+0 >
\ Action
Discrepancy
A [lL Next Action
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Mental Simulation Theory
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Mental Simulation Theory M
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Mental Simulation Theory M
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e Simulation theory can be implemented through the Inverse Model.
e Motor actions can be inferred from the current sensory information and
the future sensory situation caused by the the motor actions.
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Action Policy through Mental Imagery M
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First, define a task. (e.g., lane keeping)

Second, define a preferred state (desired state or preference).
Internally simulate possible action policies without actual overt action.
Calculate the Expected Free Energy (EFE) from the policies.

Choose an action policy that has a minimum EFE!
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Applications
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Lane Keeping using Active Inference M
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Sensory Input

e To achieve a desired
state (preference) from
an actuation, possible
actuations can be
internally simulated.

e Find an actuation that

Imagined Action Pool | Desired State has the least expected
v
Find an action policy thathas a | free energy.
minimum expected free energy ° App|y the actuation to
3 the actual system.
— — Apply Action
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Demo M

View from Rear
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http://www.youtube.com/watch?v=EHCous9j3r4&t=25

Another Demo in Carla M
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Camera input in RGB Semantic Segmented Desired State

VAE-like
Encoder-Decoder

Semantic

segmented and SSIM
extract road area
Actions
Desired State in
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Another Demo in Carla M
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http://www.youtube.com/watch?v=XtecDEplo9c

Lane Change
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OEiCE 58

pirii: BiU-iNSrincw



Lane Change Demo
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http://www.youtube.com/watch?v=EiQQ_vKPKgY

Summary M
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Contributions:

e Learn driving through action selection through mental transformation.

e Use DNN-based Internal Forward and Inverse Model
o Robustness and adaptability.

e Utilize perceptual-motor active inference framework to plan goal-directed

behavior
o This makes the decision making process more transparent because we can explain why a
certain steering angle was applied to a certain condition.
o Free from distribution shift problems.
m Not learning the mapping sensory states to control signals.
m Learning causal association between actions and sensory situations induced by the
actions.
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Questions and Discussion
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End of Presentation



